pipeline_ddim.py 4.95 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import inspect
Sid Sahai's avatar
Sid Sahai committed
16
from typing import Optional, Tuple, Union
Pedro Cuenca's avatar
Pedro Cuenca committed
17

Patrick von Platen's avatar
Patrick von Platen committed
18
19
import torch

20
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
Patrick von Platen's avatar
Patrick von Platen committed
21
22


Patrick von Platen's avatar
Patrick von Platen committed
23
class DDIMPipeline(DiffusionPipeline):
Kashif Rasul's avatar
Kashif Rasul committed
24
25
26
27
28
29
30
31
32
33
34
    r"""
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Parameters:
        unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
            [`DDPMScheduler`], or [`DDIMScheduler`].
    """

35
    def __init__(self, unet, scheduler):
Patrick von Platen's avatar
Patrick von Platen committed
36
        super().__init__()
37
        self.register_modules(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
38

Patrick von Platen's avatar
Patrick von Platen committed
39
    @torch.no_grad()
40
41
    def __call__(
        self,
Sid Sahai's avatar
Sid Sahai committed
42
43
44
45
        batch_size: int = 1,
        generator: Optional[torch.Generator] = None,
        eta: float = 0.0,
        num_inference_steps: int = 50,
46
        use_clipped_model_output: Optional[bool] = None,
Sid Sahai's avatar
Sid Sahai committed
47
        output_type: Optional[str] = "pil",
48
49
50
        return_dict: bool = True,
        **kwargs,
    ) -> Union[ImagePipelineOutput, Tuple]:
Kashif Rasul's avatar
Kashif Rasul committed
51
52
        r"""
        Args:
53
            batch_size (`int`, *optional*, defaults to 1):
Kashif Rasul's avatar
Kashif Rasul committed
54
                The number of images to generate.
55
            generator (`torch.Generator`, *optional*):
Kashif Rasul's avatar
Kashif Rasul committed
56
57
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
58
            eta (`float`, *optional*, defaults to 0.0):
Kashif Rasul's avatar
Kashif Rasul committed
59
                The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM).
60
            num_inference_steps (`int`, *optional*, defaults to 50):
Kashif Rasul's avatar
Kashif Rasul committed
61
62
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
63
64
65
            use_clipped_model_output (`bool`, *optional*, defaults to `None`):
                if `True` or `False`, see documentation for `DDIMScheduler.step`. If `None`, nothing is passed
                downstream to the scheduler. So use `None` for schedulers which don't support this argument.
66
            output_type (`str`, *optional*, defaults to `"pil"`):
Kashif Rasul's avatar
Kashif Rasul committed
67
                The output format of the generate image. Choose between
68
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
69
            return_dict (`bool`, *optional*, defaults to `True`):
Kashif Rasul's avatar
Kashif Rasul committed
70
                Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
71
72
73
74
75

        Returns:
            [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
            `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
            generated images.
Kashif Rasul's avatar
Kashif Rasul committed
76
        """
Pedro Cuenca's avatar
Pedro Cuenca committed
77

Patrick von Platen's avatar
Patrick von Platen committed
78
        # Sample gaussian noise to begin loop
Patrick von Platen's avatar
Patrick von Platen committed
79
        image = torch.randn(
Patrick von Platen's avatar
Patrick von Platen committed
80
            (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
Patrick von Platen's avatar
Patrick von Platen committed
81
82
            generator=generator,
        )
Pedro Cuenca's avatar
Pedro Cuenca committed
83
        image = image.to(self.device)
Patrick von Platen's avatar
Patrick von Platen committed
84

85
86
        # set step values
        self.scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
87

88
89
90
91
92
93
94
95
        # Ignore use_clipped_model_output if the scheduler doesn't accept this argument
        accepts_use_clipped_model_output = "use_clipped_model_output" in set(
            inspect.signature(self.scheduler.step).parameters.keys()
        )
        extra_kwargs = {}
        if accepts_use_clipped_model_output:
            extra_kwargs["use_clipped_model_output"] = use_clipped_model_output

hysts's avatar
hysts committed
96
        for t in self.progress_bar(self.scheduler.timesteps):
Patrick von Platen's avatar
Patrick von Platen committed
97
            # 1. predict noise model_output
98
            model_output = self.unet(image, t).sample
Patrick von Platen's avatar
Patrick von Platen committed
99

100
            # 2. predict previous mean of image x_t-1 and add variance depending on eta
101
            # eta corresponds to η in paper and should be between [0, 1]
102
            # do x_t -> x_t-1
103
            image = self.scheduler.step(model_output, t, image, eta, **extra_kwargs).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
104

105
106
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
anton-l's avatar
anton-l committed
107
108
        if output_type == "pil":
            image = self.numpy_to_pil(image)
109

110
111
112
113
        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)