attention2d.py 8.03 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
import math

import torch
import torch.nn.functional as F
from torch import nn


def Normalize(in_channels):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)


Patrick von Platen's avatar
Patrick von Platen committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# unet_grad_tts.py
class LinearAttention(torch.nn.Module):
    def __init__(self, dim, heads=4, dim_head=32):
        super(LinearAttention, self).__init__()
        self.heads = heads
        self.dim_head = dim_head
        hidden_dim = dim_head * heads
        self.to_qkv = torch.nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
        self.to_out = torch.nn.Conv2d(hidden_dim, dim, 1)

    def forward(self, x):
        b, c, h, w = x.shape
        qkv = self.to_qkv(x)
        #        q, k, v = rearrange(qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3)
        q, k, v = (
            qkv.reshape(b, 3, self.heads, self.dim_head, h, w)
            .permute(1, 0, 2, 3, 4, 5)
            .reshape(3, b, self.heads, self.dim_head, -1)
        )
        k = k.softmax(dim=-1)
        context = torch.einsum("bhdn,bhen->bhde", k, v)
        out = torch.einsum("bhde,bhdn->bhen", context, q)
        #        out = rearrange(out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w)
        out = out.reshape(b, self.heads, self.dim_head, h, w).reshape(b, self.heads * self.dim_head, h, w)
        return self.to_out(out)

38

Patrick von Platen's avatar
Patrick von Platen committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# unet.py
class AttnBlock(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
        self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
        self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
        self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
        self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, x):
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        # compute attention
        b, c, h, w = q.shape
        q = q.reshape(b, c, h * w)
        q = q.permute(0, 2, 1)  # b,hw,c
        k = k.reshape(b, c, h * w)  # b,c,hw
        w_ = torch.bmm(q, k)  # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
        w_ = w_ * (int(c) ** (-0.5))
        w_ = torch.nn.functional.softmax(w_, dim=2)

        # attend to values
        v = v.reshape(b, c, h * w)
        w_ = w_.permute(0, 2, 1)  # b,hw,hw (first hw of k, second of q)
        h_ = torch.bmm(v, w_)  # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
        h_ = h_.reshape(b, c, h, w)

        h_ = self.proj_out(h_)

        return x + h_

77
78

# unet_glide.py & unet_ldm.py
Patrick von Platen's avatar
Patrick von Platen committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
class AttentionBlock(nn.Module):
    """
    An attention block that allows spatial positions to attend to each other.

    Originally ported from here, but adapted to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
    """

    def __init__(
        self,
        channels,
        num_heads=1,
        num_head_channels=-1,
        use_checkpoint=False,
        encoder_channels=None,
94
        use_new_attention_order=False,  # TODO(Patrick) -> is never used, maybe delete?
Patrick von Platen's avatar
Patrick von Platen committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    ):
        super().__init__()
        self.channels = channels
        if num_head_channels == -1:
            self.num_heads = num_heads
        else:
            assert (
                channels % num_head_channels == 0
            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
            self.num_heads = channels // num_head_channels
        self.use_checkpoint = use_checkpoint
        self.norm = normalization(channels, swish=0.0)
        self.qkv = conv_nd(1, channels, channels * 3, 1)
        self.attention = QKVAttention(self.num_heads)

        if encoder_channels is not None:
            self.encoder_kv = conv_nd(1, encoder_channels, channels * 2, 1)
        self.proj_out = zero_module(conv_nd(1, channels, channels, 1))

    def forward(self, x, encoder_out=None):
        b, c, *spatial = x.shape
        qkv = self.qkv(self.norm(x).view(b, c, -1))
        if encoder_out is not None:
            encoder_out = self.encoder_kv(encoder_out)
            h = self.attention(qkv, encoder_out)
        else:
            h = self.attention(qkv)
        h = self.proj_out(h)
        return x + h.reshape(b, c, *spatial)

125

Patrick von Platen's avatar
Patrick von Platen committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
class QKVAttention(nn.Module):
    """
    A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
    """

    def __init__(self, n_heads):
        super().__init__()
        self.n_heads = n_heads

    def forward(self, qkv, encoder_kv=None):
        """
        Apply QKV attention.

        :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. :return: an [N x (H * C) x T] tensor after
        attention.
        """
        bs, width, length = qkv.shape
        assert width % (3 * self.n_heads) == 0
        ch = width // (3 * self.n_heads)
        q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
        if encoder_kv is not None:
            assert encoder_kv.shape[1] == self.n_heads * ch * 2
            ek, ev = encoder_kv.reshape(bs * self.n_heads, ch * 2, -1).split(ch, dim=1)
            k = torch.cat([ek, k], dim=-1)
            v = torch.cat([ev, v], dim=-1)
        scale = 1 / math.sqrt(math.sqrt(ch))
        weight = torch.einsum("bct,bcs->bts", q * scale, k * scale)  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
        a = torch.einsum("bts,bcs->bct", weight, v)
        return a.reshape(bs, -1, length)


158
def conv_nd(dims, *args, **kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
159
    """
160
    Create a 1D, 2D, or 3D convolution module.
Patrick von Platen's avatar
Patrick von Platen committed
161
    """
162
163
164
165
166
167
168
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")
Patrick von Platen's avatar
Patrick von Platen committed
169
170


171
172
173
174
class GroupNorm32(nn.GroupNorm):
    def __init__(self, num_groups, num_channels, swish, eps=1e-5):
        super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
        self.swish = swish
Patrick von Platen's avatar
Patrick von Platen committed
175
176

    def forward(self, x):
177
178
179
180
181
182
        y = super().forward(x.float()).to(x.dtype)
        if self.swish == 1.0:
            y = F.silu(y)
        elif self.swish:
            y = y * F.sigmoid(y * float(self.swish))
        return y
Patrick von Platen's avatar
Patrick von Platen committed
183

184
185

def normalization(channels, swish=0.0):
Patrick von Platen's avatar
Patrick von Platen committed
186
    """
187
188
189
    Make a standard normalization layer, with an optional swish activation.

    :param channels: number of input channels. :return: an nn.Module for normalization.
Patrick von Platen's avatar
Patrick von Platen committed
190
    """
191
    return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)
Patrick von Platen's avatar
Patrick von Platen committed
192
193


194
195
196
197
198
199
200
def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module
Patrick von Platen's avatar
Patrick von Platen committed
201
202
203


# unet_score_estimation.py
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# class AttnBlockpp(nn.Module):
#    """Channel-wise self-attention block. Modified from DDPM."""
#
#    def __init__(self, channels, skip_rescale=False, init_scale=0.0):
#        super().__init__()
#        self.GroupNorm_0 = nn.GroupNorm(num_groups=min(channels // 4, 32), num_channels=channels, eps=1e-6)
#        self.NIN_0 = NIN(channels, channels)
#        self.NIN_1 = NIN(channels, channels)
#        self.NIN_2 = NIN(channels, channels)
#        self.NIN_3 = NIN(channels, channels, init_scale=init_scale)
#        self.skip_rescale = skip_rescale
#
#    def forward(self, x):
#        B, C, H, W = x.shape
#        h = self.GroupNorm_0(x)
#        q = self.NIN_0(h)
#        k = self.NIN_1(h)
#        v = self.NIN_2(h)
#
#        w = torch.einsum("bchw,bcij->bhwij", q, k) * (int(C) ** (-0.5))
#        w = torch.reshape(w, (B, H, W, H * W))
#        w = F.softmax(w, dim=-1)
#        w = torch.reshape(w, (B, H, W, H, W))
#        h = torch.einsum("bhwij,bcij->bchw", w, v)
#        h = self.NIN_3(h)
#        if not self.skip_rescale:
#            return x + h
#        else:
#            return (x + h) / np.sqrt(2.0)