scheduling_dpmsolver_singlestep.py 43.5 KB
Newer Older
1
# Copyright 2024 TSAIL Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver

import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
24
from ..utils import deprecate, logging
Kashif Rasul's avatar
Kashif Rasul committed
25
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
26
27


Patrick von Platen's avatar
Patrick von Platen committed
28
29
30
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


31
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
32
33
34
35
36
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
37
38
39
40
41
42
43
44
45
46
47
48
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
49
50
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
51
52
53
54

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
55
    if alpha_transform_type == "cosine":
56

YiYi Xu's avatar
YiYi Xu committed
57
58
59
60
61
62
63
64
65
66
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
        raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
67
68
69
70
71

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
72
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
73
74
75
76
77
    return torch.tensor(betas, dtype=torch.float32)


class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
    """
78
    `DPMSolverSinglestepScheduler` is a fast dedicated high-order solver for diffusion ODEs.
79

80
81
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
82
83

    Args:
84
85
86
87
88
89
90
91
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
92
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
93
94
95
96
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        solver_order (`int`, defaults to 2):
            The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
97
            sampling, and `solver_order=3` for unconditional sampling.
98
99
100
101
102
103
104
105
106
107
108
109
110
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
            `algorithm_type="dpmsolver++"`.
        algorithm_type (`str`, defaults to `dpmsolver++`):
111
            Algorithm type for the solver; can be `dpmsolver` or `dpmsolver++`. The
112
113
114
115
116
117
118
119
120
121
            `dpmsolver` type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927)
            paper, and the `dpmsolver++` type implements the algorithms in the
            [DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to use `dpmsolver++` or
            `sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion.
        solver_type (`str`, defaults to `midpoint`):
            Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
            sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
        lower_order_final (`bool`, defaults to `True`):
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
            stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
122
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
123
124
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
125
126
127
        final_sigmas_type (`str`, *optional*, defaults to `"zero"`):
            The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final sigma
            is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
128
129
130
        lambda_min_clipped (`float`, defaults to `-inf`):
            Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
            cosine (`squaredcos_cap_v2`) noise schedule.
131
        variance_type (`str`, *optional*):
132
133
            Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
            contains the predicted Gaussian variance.
134
135
    """

Kashif Rasul's avatar
Kashif Rasul committed
136
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        solver_order: int = 2,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "dpmsolver++",
        solver_type: str = "midpoint",
154
        lower_order_final: bool = False,
155
        use_karras_sigmas: Optional[bool] = False,
156
        final_sigmas_type: Optional[str] = "zero",  # "zero", "sigma_min"
157
158
        lambda_min_clipped: float = -float("inf"),
        variance_type: Optional[str] = None,
159
    ):
160
161
162
163
        if algorithm_type == "dpmsolver":
            deprecation_message = "algorithm_type `dpmsolver` is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
            deprecate("algorithm_types=dpmsolver", "1.0.0", deprecation_message)

164
165
166
167
168
169
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
170
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
171
172
173
174
175
176
177
178
179
180
181
182
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
183
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
184
185
186
187
188
189

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # settings for DPM-Solver
        if algorithm_type not in ["dpmsolver", "dpmsolver++"]:
190
            if algorithm_type == "deis":
191
                self.register_to_config(algorithm_type="dpmsolver++")
192
193
            else:
                raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}")
194
        if solver_type not in ["midpoint", "heun"]:
195
            if solver_type in ["logrho", "bh1", "bh2"]:
196
                self.register_to_config(solver_type="midpoint")
197
198
            else:
                raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")
199

200
201
202
203
204
        if algorithm_type != "dpmsolver++" and final_sigmas_type == "zero":
            raise ValueError(
                f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please chooose `sigma_min` instead."
            )

205
206
207
208
209
210
211
        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.sample = None
        self.order_list = self.get_order_list(num_train_timesteps)
212
        self._step_index = None
213
        self._begin_index = None
214
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
215
216
217
218
219
220
221

    def get_order_list(self, num_inference_steps: int) -> List[int]:
        """
        Computes the solver order at each time step.

        Args:
            num_inference_steps (`int`):
222
                The number of diffusion steps used when generating samples with a pre-trained model.
223
224
        """
        steps = num_inference_steps
225
226
        order = self.config.solver_order
        if self.config.lower_order_final:
227
228
229
230
231
232
233
234
235
            if order == 3:
                if steps % 3 == 0:
                    orders = [1, 2, 3] * (steps // 3 - 1) + [1, 2] + [1]
                elif steps % 3 == 1:
                    orders = [1, 2, 3] * (steps // 3) + [1]
                else:
                    orders = [1, 2, 3] * (steps // 3) + [1, 2]
            elif order == 2:
                if steps % 2 == 0:
236
                    orders = [1, 2] * (steps // 2 - 1) + [1, 1]
237
238
239
240
241
242
243
244
245
246
247
248
249
                else:
                    orders = [1, 2] * (steps // 2) + [1]
            elif order == 1:
                orders = [1] * steps
        else:
            if order == 3:
                orders = [1, 2, 3] * (steps // 3)
            elif order == 2:
                orders = [1, 2] * (steps // 2)
            elif order == 1:
                orders = [1] * steps
        return orders

250
251
252
253
254
255
256
    @property
    def step_index(self):
        """
        The index counter for current timestep. It will increae 1 after each scheduler step.
        """
        return self._step_index

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

275
276
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
        """
277
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
278
279
280

        Args:
            num_inference_steps (`int`):
281
282
283
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
284
285
        """
        self.num_inference_steps = num_inference_steps
286
287
        # Clipping the minimum of all lambda(t) for numerical stability.
        # This is critical for cosine (squaredcos_cap_v2) noise schedule.
Patrick von Platen's avatar
Patrick von Platen committed
288
        clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
289
        timesteps = (
290
            np.linspace(0, self.config.num_train_timesteps - 1 - clipped_idx, num_inference_steps + 1)
291
292
293
294
            .round()[::-1][:-1]
            .copy()
            .astype(np.int64)
        )
295

296
297
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        if self.config.use_karras_sigmas:
298
            log_sigmas = np.log(sigmas)
299
            sigmas = np.flip(sigmas).copy()
300
301
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
302
303
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
304
305

        if self.config.final_sigmas_type == "sigma_min":
306
            sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
307
308
309
310
311
312
313
        elif self.config.final_sigmas_type == "zero":
            sigma_last = 0
        else:
            raise ValueError(
                f" `final_sigmas_type` must be one of `sigma_min` or `zero`, but got {self.config.final_sigmas_type}"
            )
        sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
314

315
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
316

317
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
318
319
        self.model_outputs = [None] * self.config.solver_order
        self.sample = None
Patrick von Platen's avatar
Patrick von Platen committed
320
321

        if not self.config.lower_order_final and num_inference_steps % self.config.solver_order != 0:
322
            logger.warning(
323
                "Changing scheduler {self.config} to have `lower_order_final` set to True to handle uneven amount of inference steps. Please make sure to always use an even number of `num_inference steps when using `lower_order_final=False`."
Patrick von Platen's avatar
Patrick von Platen committed
324
325
326
            )
            self.register_to_config(lower_order_final=True)

327
        if not self.config.lower_order_final and self.config.final_sigmas_type == "zero":
328
            logger.warning(
329
330
331
332
                " `last_sigmas_type='zero'` is not supported for `lower_order_final=False`. Changing scheduler {self.config} to have `lower_order_final` set to True."
            )
            self.register_to_config(lower_order_final=True)

Patrick von Platen's avatar
Patrick von Platen committed
333
        self.order_list = self.get_order_list(num_inference_steps)
334

335
336
        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
337
        self._begin_index = None
338
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
339

340
341
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
    def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
342
343
344
345
346
347
348
349
350
351
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
352
        batch_size, channels, *remaining_dims = sample.shape
353
354
355
356
357

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
358
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
359
360
361
362
363
364
365
366
367
368

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

369
        sample = sample.reshape(batch_size, channels, *remaining_dims)
370
371
372
        sample = sample.to(dtype)

        return sample
373

374
375
376
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
377
        log_sigma = np.log(np.maximum(sigma, 1e-10))
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

398
399
400
401
402
403
404
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
    def _sigma_to_alpha_sigma_t(self, sigma):
        alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
        sigma_t = sigma * alpha_t

        return alpha_t, sigma_t

405
406
407
408
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
    def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
423
424
425
426
427
428
429
430

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

431
    def convert_model_output(
432
433
434
435
436
        self,
        model_output: torch.FloatTensor,
        *args,
        sample: torch.FloatTensor = None,
        **kwargs,
437
438
    ) -> torch.FloatTensor:
        """
439
440
441
442
443
        Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
        designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
        integral of the data prediction model.

        <Tip>
444

445
446
        The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
        prediction and data prediction models.
447

448
        </Tip>
449
450

        Args:
451
452
            model_output (`torch.FloatTensor`):
                The direct output from the learned diffusion model.
453
            sample (`torch.FloatTensor`):
454
                A current instance of a sample created by the diffusion process.
455
456

        Returns:
457
458
            `torch.FloatTensor`:
                The converted model output.
459
        """
460
461
462
463
464
465
466
467
468
469
470
471
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
                raise ValueError("missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
472
473
474
        # DPM-Solver++ needs to solve an integral of the data prediction model.
        if self.config.algorithm_type == "dpmsolver++":
            if self.config.prediction_type == "epsilon":
475
476
477
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
                if self.config.variance_type in ["learned_range"]:
                    model_output = model_output[:, :3]
478
479
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
480
481
482
483
                x0_pred = (sample - sigma_t * model_output) / alpha_t
            elif self.config.prediction_type == "sample":
                x0_pred = model_output
            elif self.config.prediction_type == "v_prediction":
484
485
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
486
487
488
489
490
491
492
493
                x0_pred = alpha_t * sample - sigma_t * model_output
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the DPMSolverSinglestepScheduler."
                )

            if self.config.thresholding:
494
495
                x0_pred = self._threshold_sample(x0_pred)

496
497
498
499
            return x0_pred
        # DPM-Solver needs to solve an integral of the noise prediction model.
        elif self.config.algorithm_type == "dpmsolver":
            if self.config.prediction_type == "epsilon":
500
501
502
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
                if self.config.variance_type in ["learned_range"]:
                    model_output = model_output[:, :3]
503
504
                return model_output
            elif self.config.prediction_type == "sample":
505
506
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
507
508
509
                epsilon = (sample - alpha_t * model_output) / sigma_t
                return epsilon
            elif self.config.prediction_type == "v_prediction":
510
511
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
512
513
514
515
516
517
518
519
520
521
522
                epsilon = alpha_t * model_output + sigma_t * sample
                return epsilon
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the DPMSolverSinglestepScheduler."
                )

    def dpm_solver_first_order_update(
        self,
        model_output: torch.FloatTensor,
523
524
525
        *args,
        sample: torch.FloatTensor = None,
        **kwargs,
526
527
    ) -> torch.FloatTensor:
        """
528
        One step for the first-order DPMSolver (equivalent to DDIM).
529
530

        Args:
531
532
533
534
535
536
            model_output (`torch.FloatTensor`):
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
537
            sample (`torch.FloatTensor`):
538
                A current instance of a sample created by the diffusion process.
539
540

        Returns:
541
542
            `torch.FloatTensor`:
                The sample tensor at the previous timestep.
543
        """
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
        sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
569
570
571
572
573
574
575
576
577
578
        h = lambda_t - lambda_s
        if self.config.algorithm_type == "dpmsolver++":
            x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output
        elif self.config.algorithm_type == "dpmsolver":
            x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
        return x_t

    def singlestep_dpm_solver_second_order_update(
        self,
        model_output_list: List[torch.FloatTensor],
579
580
581
        *args,
        sample: torch.FloatTensor = None,
        **kwargs,
582
583
    ) -> torch.FloatTensor:
        """
584
585
        One step for the second-order singlestep DPMSolver that computes the solution at time `prev_timestep` from the
        time `timestep_list[-2]`.
586
587
588

        Args:
            model_output_list (`List[torch.FloatTensor]`):
589
590
591
592
593
                The direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`):
                The current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
594
            sample (`torch.FloatTensor`):
595
                A current instance of a sample created by the diffusion process.
596
597

        Returns:
598
599
            `torch.FloatTensor`:
                The sample tensor at the previous timestep.
600
        """
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
        sigma_t, sigma_s0, sigma_s1 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)

635
        m0, m1 = model_output_list[-1], model_output_list[-2]
636

637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
        h, h_0 = lambda_t - lambda_s1, lambda_s0 - lambda_s1
        r0 = h_0 / h
        D0, D1 = m1, (1.0 / r0) * (m0 - m1)
        if self.config.algorithm_type == "dpmsolver++":
            # See https://arxiv.org/abs/2211.01095 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s1) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s1) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                )
        elif self.config.algorithm_type == "dpmsolver":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s1) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s1) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                )
        return x_t

    def singlestep_dpm_solver_third_order_update(
        self,
        model_output_list: List[torch.FloatTensor],
673
674
675
        *args,
        sample: torch.FloatTensor = None,
        **kwargs,
676
677
    ) -> torch.FloatTensor:
        """
678
679
        One step for the third-order singlestep DPMSolver that computes the solution at time `prev_timestep` from the
        time `timestep_list[-3]`.
680
681
682

        Args:
            model_output_list (`List[torch.FloatTensor]`):
683
684
685
686
687
                The direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`):
                The current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
688
            sample (`torch.FloatTensor`):
689
                A current instance of a sample created by diffusion process.
690
691

        Returns:
692
693
            `torch.FloatTensor`:
                The sample tensor at the previous timestep.
694
        """
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721

        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing`sample` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
            self.sigmas[self.step_index - 2],
722
        )
723
724
725
726
727
728
729
730
731
732
733
734
735

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
        alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
        lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2)

        m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
        h, h_0, h_1 = lambda_t - lambda_s2, lambda_s0 - lambda_s2, lambda_s1 - lambda_s2
        r0, r1 = h_0 / h, h_1 / h
        D0 = m2
        D1_0, D1_1 = (1.0 / r1) * (m1 - m2), (1.0 / r0) * (m0 - m2)
        D1 = (r0 * D1_0 - r1 * D1_1) / (r0 - r1)
        D2 = 2.0 * (D1_1 - D1_0) / (r0 - r1)
        if self.config.algorithm_type == "dpmsolver++":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s2) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1_1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s2) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                    - (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
                )
        elif self.config.algorithm_type == "dpmsolver":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s2) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1_1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s2) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                    - (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
                )
        return x_t

    def singlestep_dpm_solver_update(
        self,
        model_output_list: List[torch.FloatTensor],
777
778
779
780
        *args,
        sample: torch.FloatTensor = None,
        order: int = None,
        **kwargs,
781
782
    ) -> torch.FloatTensor:
        """
783
        One step for the singlestep DPMSolver.
784
785
786

        Args:
            model_output_list (`List[torch.FloatTensor]`):
787
788
789
790
791
                The direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`):
                The current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
792
            sample (`torch.FloatTensor`):
793
                A current instance of a sample created by diffusion process.
794
            order (`int`):
795
                The solver order at this step.
796
797

        Returns:
798
799
            `torch.FloatTensor`:
                The sample tensor at the previous timestep.
800
        """
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing`sample` as a required keyward argument")
        if order is None:
            if len(args) > 3:
                order = args[3]
            else:
                raise ValueError(" missing `order` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

827
        if order == 1:
828
            return self.dpm_solver_first_order_update(model_output_list[-1], sample=sample)
829
        elif order == 2:
830
            return self.singlestep_dpm_solver_second_order_update(model_output_list, sample=sample)
831
        elif order == 3:
832
            return self.singlestep_dpm_solver_third_order_update(model_output_list, sample=sample)
833
834
835
        else:
            raise ValueError(f"Order must be 1, 2, 3, got {order}")

836
837
838
839
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
840

841
        index_candidates = (schedule_timesteps == timestep).nonzero()
842
843
844
845
846
847
848
849
850
851
852
853

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

854
855
856
857
858
859
860
861
862
863
864
865
866
867
        return step_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
    def _init_step_index(self, timestep):
        """
        Initialize the step_index counter for the scheduler.
        """

        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
868

869
870
871
872
873
874
875
876
    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: int,
        sample: torch.FloatTensor,
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
877
878
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the singlestep DPMSolver.
879
880

        Args:
881
882
883
884
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
885
            sample (`torch.FloatTensor`):
886
887
888
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
889
890

        Returns:
891
892
893
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
894
895
896
897
898
899
900

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

901
902
        if self.step_index is None:
            self._init_step_index(timestep)
903

904
        model_output = self.convert_model_output(model_output, sample=sample)
905
906
907
908
        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
        self.model_outputs[-1] = model_output

909
        order = self.order_list[self.step_index]
Patrick von Platen's avatar
Patrick von Platen committed
910
911
912
913
914
915

        #  For img2img denoising might start with order>1 which is not possible
        #  In this case make sure that the first two steps are both order=1
        while self.model_outputs[-order] is None:
            order -= 1

916
917
918
919
        # For single-step solvers, we use the initial value at each time with order = 1.
        if order == 1:
            self.sample = sample

920
921
922
923
        prev_sample = self.singlestep_dpm_solver_update(self.model_outputs, sample=self.sample, order=order)

        # upon completion increase step index by one
        self._step_index += 1
924
925
926
927
928
929
930
931
932
933
934
935

        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

    def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
936
937
            sample (`torch.FloatTensor`):
                The input sample.
938
939

        Returns:
940
941
            `torch.FloatTensor`:
                A scaled input sample.
942
943
944
        """
        return sample

945
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
946
947
948
949
    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
950
        timesteps: torch.IntTensor,
951
    ) -> torch.FloatTensor:
952
953
954
955
956
957
958
959
960
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
961

962
963
964
965
966
        # begin_index is None when the scheduler is used for training
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
        else:
            step_indices = [self.begin_index] * timesteps.shape[0]
967

968
969
970
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)
971

972
973
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
974
975
976
977
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps