auto_pipeline.py 56.5 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
# coding=utf-8
2
# Copyright 2024 The HuggingFace Inc. team.
YiYi Xu's avatar
YiYi Xu committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import OrderedDict

18
19
from huggingface_hub.utils import validate_hf_hub_args

YiYi Xu's avatar
YiYi Xu committed
20
from ..configuration_utils import ConfigMixin
21
from ..models.controlnets import ControlNetUnionModel
22
from ..utils import is_sentencepiece_available
23
from .aura_flow import AuraFlowPipeline
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
24
from .cogview3 import CogView3PlusPipeline
YiYi Xu's avatar
YiYi Xu committed
25
26
27
28
from .controlnet import (
    StableDiffusionControlNetImg2ImgPipeline,
    StableDiffusionControlNetInpaintPipeline,
    StableDiffusionControlNetPipeline,
29
    StableDiffusionXLControlNetImg2ImgPipeline,
30
    StableDiffusionXLControlNetInpaintPipeline,
YiYi Xu's avatar
YiYi Xu committed
31
    StableDiffusionXLControlNetPipeline,
32
33
34
    StableDiffusionXLControlNetUnionImg2ImgPipeline,
    StableDiffusionXLControlNetUnionInpaintPipeline,
    StableDiffusionXLControlNetUnionPipeline,
YiYi Xu's avatar
YiYi Xu committed
35
36
)
from .deepfloyd_if import IFImg2ImgPipeline, IFInpaintingPipeline, IFPipeline
37
from .flux import (
38
39
    FluxControlImg2ImgPipeline,
    FluxControlInpaintPipeline,
40
41
42
    FluxControlNetImg2ImgPipeline,
    FluxControlNetInpaintPipeline,
    FluxControlNetPipeline,
43
    FluxControlPipeline,
44
45
46
47
    FluxImg2ImgPipeline,
    FluxInpaintPipeline,
    FluxPipeline,
)
48
from .hunyuandit import HunyuanDiTPipeline
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from .kandinsky import (
    KandinskyCombinedPipeline,
    KandinskyImg2ImgCombinedPipeline,
    KandinskyImg2ImgPipeline,
    KandinskyInpaintCombinedPipeline,
    KandinskyInpaintPipeline,
    KandinskyPipeline,
)
from .kandinsky2_2 import (
    KandinskyV22CombinedPipeline,
    KandinskyV22Img2ImgCombinedPipeline,
    KandinskyV22Img2ImgPipeline,
    KandinskyV22InpaintCombinedPipeline,
    KandinskyV22InpaintPipeline,
    KandinskyV22Pipeline,
)
65
from .kandinsky3 import Kandinsky3Img2ImgPipeline, Kandinsky3Pipeline
66
from .latent_consistency_models import LatentConsistencyModelImg2ImgPipeline, LatentConsistencyModelPipeline
67
from .lumina import LuminaText2ImgPipeline
YiYi Xu's avatar
YiYi Xu committed
68
from .pag import (
69
    HunyuanDiTPAGPipeline,
70
    PixArtSigmaPAGPipeline,
71
    StableDiffusion3PAGImg2ImgPipeline,
72
    StableDiffusion3PAGPipeline,
73
    StableDiffusionControlNetPAGInpaintPipeline,
74
    StableDiffusionControlNetPAGPipeline,
75
    StableDiffusionPAGImg2ImgPipeline,
76
    StableDiffusionPAGInpaintPipeline,
77
    StableDiffusionPAGPipeline,
78
    StableDiffusionXLControlNetPAGImg2ImgPipeline,
YiYi Xu's avatar
YiYi Xu committed
79
80
81
82
83
    StableDiffusionXLControlNetPAGPipeline,
    StableDiffusionXLPAGImg2ImgPipeline,
    StableDiffusionXLPAGInpaintPipeline,
    StableDiffusionXLPAGPipeline,
)
84
from .pixart_alpha import PixArtAlphaPipeline, PixArtSigmaPipeline
85
from .stable_cascade import StableCascadeCombinedPipeline, StableCascadeDecoderPipeline
YiYi Xu's avatar
YiYi Xu committed
86
87
88
89
90
from .stable_diffusion import (
    StableDiffusionImg2ImgPipeline,
    StableDiffusionInpaintPipeline,
    StableDiffusionPipeline,
)
91
92
from .stable_diffusion_3 import (
    StableDiffusion3Img2ImgPipeline,
93
    StableDiffusion3InpaintPipeline,
94
95
    StableDiffusion3Pipeline,
)
YiYi Xu's avatar
YiYi Xu committed
96
97
98
99
100
from .stable_diffusion_xl import (
    StableDiffusionXLImg2ImgPipeline,
    StableDiffusionXLInpaintPipeline,
    StableDiffusionXLPipeline,
)
Kashif Rasul's avatar
Kashif Rasul committed
101
from .wuerstchen import WuerstchenCombinedPipeline, WuerstchenDecoderPipeline
YiYi Xu's avatar
YiYi Xu committed
102
103
104
105
106
107


AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
    [
        ("stable-diffusion", StableDiffusionPipeline),
        ("stable-diffusion-xl", StableDiffusionXLPipeline),
108
        ("stable-diffusion-3", StableDiffusion3Pipeline),
109
        ("stable-diffusion-3-pag", StableDiffusion3PAGPipeline),
YiYi Xu's avatar
YiYi Xu committed
110
        ("if", IFPipeline),
111
        ("hunyuan", HunyuanDiTPipeline),
112
        ("hunyuan-pag", HunyuanDiTPAGPipeline),
113
114
        ("kandinsky", KandinskyCombinedPipeline),
        ("kandinsky22", KandinskyV22CombinedPipeline),
115
        ("kandinsky3", Kandinsky3Pipeline),
YiYi Xu's avatar
YiYi Xu committed
116
117
        ("stable-diffusion-controlnet", StableDiffusionControlNetPipeline),
        ("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetPipeline),
118
        ("stable-diffusion-xl-controlnet-union", StableDiffusionXLControlNetUnionPipeline),
Kashif Rasul's avatar
Kashif Rasul committed
119
        ("wuerstchen", WuerstchenCombinedPipeline),
120
        ("cascade", StableCascadeCombinedPipeline),
121
        ("lcm", LatentConsistencyModelPipeline),
122
123
        ("pixart-alpha", PixArtAlphaPipeline),
        ("pixart-sigma", PixArtSigmaPipeline),
124
        ("stable-diffusion-pag", StableDiffusionPAGPipeline),
125
        ("stable-diffusion-controlnet-pag", StableDiffusionControlNetPAGPipeline),
YiYi Xu's avatar
YiYi Xu committed
126
127
        ("stable-diffusion-xl-pag", StableDiffusionXLPAGPipeline),
        ("stable-diffusion-xl-controlnet-pag", StableDiffusionXLControlNetPAGPipeline),
128
        ("pixart-sigma-pag", PixArtSigmaPAGPipeline),
129
        ("auraflow", AuraFlowPipeline),
Sayak Paul's avatar
Sayak Paul committed
130
        ("flux", FluxPipeline),
131
        ("flux-control", FluxControlPipeline),
132
        ("flux-controlnet", FluxControlNetPipeline),
133
        ("lumina", LuminaText2ImgPipeline),
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
134
        ("cogview3", CogView3PlusPipeline),
YiYi Xu's avatar
YiYi Xu committed
135
136
137
138
139
140
141
    ]
)

AUTO_IMAGE2IMAGE_PIPELINES_MAPPING = OrderedDict(
    [
        ("stable-diffusion", StableDiffusionImg2ImgPipeline),
        ("stable-diffusion-xl", StableDiffusionXLImg2ImgPipeline),
142
        ("stable-diffusion-3", StableDiffusion3Img2ImgPipeline),
143
        ("stable-diffusion-3-pag", StableDiffusion3PAGImg2ImgPipeline),
YiYi Xu's avatar
YiYi Xu committed
144
        ("if", IFImg2ImgPipeline),
145
146
        ("kandinsky", KandinskyImg2ImgCombinedPipeline),
        ("kandinsky22", KandinskyV22Img2ImgCombinedPipeline),
147
        ("kandinsky3", Kandinsky3Img2ImgPipeline),
YiYi Xu's avatar
YiYi Xu committed
148
        ("stable-diffusion-controlnet", StableDiffusionControlNetImg2ImgPipeline),
149
        ("stable-diffusion-pag", StableDiffusionPAGImg2ImgPipeline),
150
        ("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetImg2ImgPipeline),
151
        ("stable-diffusion-xl-controlnet-union", StableDiffusionXLControlNetUnionImg2ImgPipeline),
YiYi Xu's avatar
YiYi Xu committed
152
        ("stable-diffusion-xl-pag", StableDiffusionXLPAGImg2ImgPipeline),
153
        ("stable-diffusion-xl-controlnet-pag", StableDiffusionXLControlNetPAGImg2ImgPipeline),
154
        ("lcm", LatentConsistencyModelImg2ImgPipeline),
155
        ("flux", FluxImg2ImgPipeline),
156
        ("flux-controlnet", FluxControlNetImg2ImgPipeline),
157
        ("flux-control", FluxControlImg2ImgPipeline),
YiYi Xu's avatar
YiYi Xu committed
158
159
160
161
162
163
164
    ]
)

AUTO_INPAINT_PIPELINES_MAPPING = OrderedDict(
    [
        ("stable-diffusion", StableDiffusionInpaintPipeline),
        ("stable-diffusion-xl", StableDiffusionXLInpaintPipeline),
165
        ("stable-diffusion-3", StableDiffusion3InpaintPipeline),
YiYi Xu's avatar
YiYi Xu committed
166
        ("if", IFInpaintingPipeline),
167
168
169
        ("kandinsky", KandinskyInpaintCombinedPipeline),
        ("kandinsky22", KandinskyV22InpaintCombinedPipeline),
        ("stable-diffusion-controlnet", StableDiffusionControlNetInpaintPipeline),
170
        ("stable-diffusion-controlnet-pag", StableDiffusionControlNetPAGInpaintPipeline),
171
        ("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetInpaintPipeline),
172
        ("stable-diffusion-xl-controlnet-union", StableDiffusionXLControlNetUnionInpaintPipeline),
YiYi Xu's avatar
YiYi Xu committed
173
        ("stable-diffusion-xl-pag", StableDiffusionXLPAGInpaintPipeline),
174
        ("flux", FluxInpaintPipeline),
175
        ("flux-controlnet", FluxControlNetInpaintPipeline),
176
        ("flux-control", FluxControlInpaintPipeline),
177
        ("stable-diffusion-pag", StableDiffusionPAGInpaintPipeline),
178
179
180
181
182
183
184
    ]
)

_AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict(
    [
        ("kandinsky", KandinskyPipeline),
        ("kandinsky22", KandinskyV22Pipeline),
Kashif Rasul's avatar
Kashif Rasul committed
185
        ("wuerstchen", WuerstchenDecoderPipeline),
186
        ("cascade", StableCascadeDecoderPipeline),
187
188
189
190
191
192
193
194
195
196
    ]
)
_AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict(
    [
        ("kandinsky", KandinskyImg2ImgPipeline),
        ("kandinsky22", KandinskyV22Img2ImgPipeline),
    ]
)
_AUTO_INPAINT_DECODER_PIPELINES_MAPPING = OrderedDict(
    [
YiYi Xu's avatar
YiYi Xu committed
197
198
199
200
201
        ("kandinsky", KandinskyInpaintPipeline),
        ("kandinsky22", KandinskyV22InpaintPipeline),
    ]
)

202
if is_sentencepiece_available():
203
    from .kolors import KolorsImg2ImgPipeline, KolorsPipeline
Álvaro Somoza's avatar
Álvaro Somoza committed
204
    from .pag import KolorsPAGPipeline
205
206

    AUTO_TEXT2IMAGE_PIPELINES_MAPPING["kolors"] = KolorsPipeline
Álvaro Somoza's avatar
Álvaro Somoza committed
207
    AUTO_TEXT2IMAGE_PIPELINES_MAPPING["kolors-pag"] = KolorsPAGPipeline
208
    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["kolors"] = KolorsImg2ImgPipeline
209

YiYi Xu's avatar
YiYi Xu committed
210
211
212
213
SUPPORTED_TASKS_MAPPINGS = [
    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
    AUTO_INPAINT_PIPELINES_MAPPING,
214
215
216
    _AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING,
    _AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING,
    _AUTO_INPAINT_DECODER_PIPELINES_MAPPING,
YiYi Xu's avatar
YiYi Xu committed
217
218
219
]


220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
def _get_connected_pipeline(pipeline_cls):
    # for now connected pipelines can only be loaded from decoder pipelines, such as kandinsky-community/kandinsky-2-2-decoder
    if pipeline_cls in _AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING.values():
        return _get_task_class(
            AUTO_TEXT2IMAGE_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False
        )
    if pipeline_cls in _AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING.values():
        return _get_task_class(
            AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False
        )
    if pipeline_cls in _AUTO_INPAINT_DECODER_PIPELINES_MAPPING.values():
        return _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False)


def _get_task_class(mapping, pipeline_class_name, throw_error_if_not_exist: bool = True):
YiYi Xu's avatar
YiYi Xu committed
235
236
237
238
239
240
241
242
243
244
245
246
    def get_model(pipeline_class_name):
        for task_mapping in SUPPORTED_TASKS_MAPPINGS:
            for model_name, pipeline in task_mapping.items():
                if pipeline.__name__ == pipeline_class_name:
                    return model_name

    model_name = get_model(pipeline_class_name)

    if model_name is not None:
        task_class = mapping.get(model_name, None)
        if task_class is not None:
            return task_class
247
248
249

    if throw_error_if_not_exist:
        raise ValueError(f"AutoPipeline can't find a pipeline linked to {pipeline_class_name} for {model_name}")
YiYi Xu's avatar
YiYi Xu committed
250
251
252
253
254


class AutoPipelineForText2Image(ConfigMixin):
    r"""

255
256
257
    [`AutoPipelineForText2Image`] is a generic pipeline class that instantiates a text-to-image pipeline class. The
    specific underlying pipeline class is automatically selected from either the
    [`~AutoPipelineForText2Image.from_pretrained`] or [`~AutoPipelineForText2Image.from_pipe`] methods.
YiYi Xu's avatar
YiYi Xu committed
258

259
    This class cannot be instantiated using `__init__()` (throws an error).
YiYi Xu's avatar
YiYi Xu committed
260
261
262
263
264
265
266

    Class attributes:

        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.

    """
267

YiYi Xu's avatar
YiYi Xu committed
268
269
270
271
272
273
274
275
276
277
    config_name = "model_index.json"

    def __init__(self, *args, **kwargs):
        raise EnvironmentError(
            f"{self.__class__.__name__} is designed to be instantiated "
            f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
            f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
        )

    @classmethod
278
    @validate_hf_hub_args
YiYi Xu's avatar
YiYi Xu committed
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
    def from_pretrained(cls, pretrained_model_or_path, **kwargs):
        r"""
        Instantiates a text-to-image Pytorch diffusion pipeline from pretrained pipeline weight.

        The from_pretrained() method takes care of returning the correct pipeline class instance by:
            1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
               config object
            2. Find the text-to-image pipeline linked to the pipeline class using pattern matching on pipeline class
               name.

        If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetPipeline`] object.

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        If you get the error message below, you need to finetune the weights for your downstream task:

        ```
296
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
YiYi Xu's avatar
YiYi Xu committed
297
298
299
300
301
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```

        Parameters:
302
            pretrained_model_or_path (`str` or `os.PathLike`, *optional*):
YiYi Xu's avatar
YiYi Xu committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
                Can be either:

                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
319

YiYi Xu's avatar
YiYi Xu committed
320
321
322
323
324
325
326
327
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
328
            token (`str` or *bool*, *optional*):
YiYi Xu's avatar
YiYi Xu committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            custom_revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
            mirror (`str`, *optional*):
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
                same device.

                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
            max_memory (`Dict`, *optional*):
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
            offload_folder (`str` or `os.PathLike`, *optional*):
                The path to offload weights if device_map contains the value `"disk"`.
            offload_state_dict (`bool`, *optional*):
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
            variant (`str`, *optional*):
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.

        <Tip>

        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
        `huggingface-cli login`.

        </Tip>

        Examples:

        ```py
386
        >>> from diffusers import AutoPipelineForText2Image
YiYi Xu's avatar
YiYi Xu committed
387

388
        >>> pipeline = AutoPipelineForText2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
389
        >>> image = pipeline(prompt).images[0]
YiYi Xu's avatar
YiYi Xu committed
390
391
        ```
        """
392
        cache_dir = kwargs.pop("cache_dir", None)
393
394
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
395
        token = kwargs.pop("token", None)
396
397
398
399
400
401
402
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)

        load_config_kwargs = {
            "cache_dir": cache_dir,
            "force_download": force_download,
            "proxies": proxies,
403
            "token": token,
404
405
406
407
408
            "local_files_only": local_files_only,
            "revision": revision,
        }

        config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
YiYi Xu's avatar
YiYi Xu committed
409
        orig_class_name = config["_class_name"]
410
411
412
413
        if "ControlPipeline" in orig_class_name:
            to_replace = "ControlPipeline"
        else:
            to_replace = "Pipeline"
YiYi Xu's avatar
YiYi Xu committed
414
415

        if "controlnet" in kwargs:
416
            if isinstance(kwargs["controlnet"], ControlNetUnionModel):
417
                orig_class_name = config["_class_name"].replace(to_replace, "ControlNetUnionPipeline")
418
            else:
419
                orig_class_name = config["_class_name"].replace(to_replace, "ControlNetPipeline")
YiYi Xu's avatar
YiYi Xu committed
420
421
422
        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
423
                orig_class_name = orig_class_name.replace(to_replace, "PAGPipeline")
YiYi Xu's avatar
YiYi Xu committed
424
425
426

        text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, orig_class_name)

427
        kwargs = {**load_config_kwargs, **kwargs}
YiYi Xu's avatar
YiYi Xu committed
428
429
430
431
432
433
434
435
436
437
438
        return text_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs)

    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
        Instantiates a text-to-image Pytorch diffusion pipeline from another instantiated diffusion pipeline class.

        The from_pipe() method takes care of returning the correct pipeline class instance by finding the text-to-image
        pipeline linked to the pipeline class using pattern matching on pipeline class name.

        All the modules the pipeline contains will be used to initialize the new pipeline without reallocating
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
439
        additional memory.
YiYi Xu's avatar
YiYi Xu committed
440
441
442
443
444
445
446
447

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pipeline (`DiffusionPipeline`):
                an instantiated `DiffusionPipeline` object

        ```py
448
        >>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
YiYi Xu's avatar
YiYi Xu committed
449
450

        >>> pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
451
        ...     "stable-diffusion-v1-5/stable-diffusion-v1-5", requires_safety_checker=False
YiYi Xu's avatar
YiYi Xu committed
452
453
        ... )

454
455
        >>> pipe_t2i = AutoPipelineForText2Image.from_pipe(pipe_i2i)
        >>> image = pipe_t2i(prompt).images[0]
YiYi Xu's avatar
YiYi Xu committed
456
457
458
459
460
461
462
463
464
        ```
        """

        original_config = dict(pipeline.config)
        original_cls_name = pipeline.__class__.__name__

        # derive the pipeline class to instantiate
        text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, original_cls_name)

465
466
        if "controlnet" in kwargs:
            if kwargs["controlnet"] is not None:
YiYi Xu's avatar
YiYi Xu committed
467
                to_replace = "PAGPipeline" if "PAG" in text_2_image_cls.__name__ else "Pipeline"
468
469
                text_2_image_cls = _get_task_class(
                    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
YiYi Xu's avatar
YiYi Xu committed
470
                    text_2_image_cls.__name__.replace("ControlNet", "").replace(to_replace, "ControlNet" + to_replace),
471
472
473
474
                )
            else:
                text_2_image_cls = _get_task_class(
                    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
YiYi Xu's avatar
YiYi Xu committed
475
476
477
478
479
480
481
482
483
484
485
486
487
488
                    text_2_image_cls.__name__.replace("ControlNet", ""),
                )

        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
                text_2_image_cls = _get_task_class(
                    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
                    text_2_image_cls.__name__.replace("PAG", "").replace("Pipeline", "PAGPipeline"),
                )
            else:
                text_2_image_cls = _get_task_class(
                    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
                    text_2_image_cls.__name__.replace("PAG", ""),
489
490
                )

YiYi Xu's avatar
YiYi Xu committed
491
        # define expected module and optional kwargs given the pipeline signature
492
        expected_modules, optional_kwargs = text_2_image_cls._get_signature_keys(text_2_image_cls)
YiYi Xu's avatar
YiYi Xu committed
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)

        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        original_class_obj = {
            k: pipeline.components[k]
            for k, v in pipeline.components.items()
            if k in expected_modules and k not in passed_class_obj
        }

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k, v in original_config.items()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config that were not expected by original pipeline is stored as private attribute
        # we will pass them as optional arguments if they can be accepted by the pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        text_2_image_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}

        # store unused config as private attribute
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
            for k, v in original_config.items()
            if k not in text_2_image_kwargs
        }

531
532
533
        missing_modules = (
            set(expected_modules) - set(text_2_image_cls._optional_components) - set(text_2_image_kwargs.keys())
        )
YiYi Xu's avatar
YiYi Xu committed
534
535
536

        if len(missing_modules) > 0:
            raise ValueError(
537
                f"Pipeline {text_2_image_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
YiYi Xu's avatar
YiYi Xu committed
538
539
540
541
542
543
544
545
546
547
548
549
            )

        model = text_2_image_cls(**text_2_image_kwargs)
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
        model.register_to_config(**unused_original_config)

        return model


class AutoPipelineForImage2Image(ConfigMixin):
    r"""

550
551
552
    [`AutoPipelineForImage2Image`] is a generic pipeline class that instantiates an image-to-image pipeline class. The
    specific underlying pipeline class is automatically selected from either the
    [`~AutoPipelineForImage2Image.from_pretrained`] or [`~AutoPipelineForImage2Image.from_pipe`] methods.
YiYi Xu's avatar
YiYi Xu committed
553

554
    This class cannot be instantiated using `__init__()` (throws an error).
YiYi Xu's avatar
YiYi Xu committed
555
556
557
558
559
560
561

    Class attributes:

        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.

    """
562

YiYi Xu's avatar
YiYi Xu committed
563
564
565
566
567
568
569
570
571
572
    config_name = "model_index.json"

    def __init__(self, *args, **kwargs):
        raise EnvironmentError(
            f"{self.__class__.__name__} is designed to be instantiated "
            f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
            f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
        )

    @classmethod
573
    @validate_hf_hub_args
YiYi Xu's avatar
YiYi Xu committed
574
575
576
577
578
579
580
581
582
583
    def from_pretrained(cls, pretrained_model_or_path, **kwargs):
        r"""
        Instantiates a image-to-image Pytorch diffusion pipeline from pretrained pipeline weight.

        The from_pretrained() method takes care of returning the correct pipeline class instance by:
            1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
               config object
            2. Find the image-to-image pipeline linked to the pipeline class using pattern matching on pipeline class
               name.

584
585
        If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetImg2ImgPipeline`]
        object.
YiYi Xu's avatar
YiYi Xu committed
586
587
588
589
590
591

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        If you get the error message below, you need to finetune the weights for your downstream task:

        ```
592
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
YiYi Xu's avatar
YiYi Xu committed
593
594
595
596
597
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```

        Parameters:
598
            pretrained_model_or_path (`str` or `os.PathLike`, *optional*):
YiYi Xu's avatar
YiYi Xu committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
                Can be either:

                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
615

YiYi Xu's avatar
YiYi Xu committed
616
617
618
619
620
621
622
623
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
624
            token (`str` or *bool*, *optional*):
YiYi Xu's avatar
YiYi Xu committed
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            custom_revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
            mirror (`str`, *optional*):
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
                same device.

                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
            max_memory (`Dict`, *optional*):
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
            offload_folder (`str` or `os.PathLike`, *optional*):
                The path to offload weights if device_map contains the value `"disk"`.
            offload_state_dict (`bool`, *optional*):
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
            variant (`str`, *optional*):
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.

        <Tip>

        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
        `huggingface-cli login`.

        </Tip>

        Examples:

        ```py
682
        >>> from diffusers import AutoPipelineForImage2Image
YiYi Xu's avatar
YiYi Xu committed
683

684
        >>> pipeline = AutoPipelineForImage2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
685
        >>> image = pipeline(prompt, image).images[0]
YiYi Xu's avatar
YiYi Xu committed
686
687
        ```
        """
688
        cache_dir = kwargs.pop("cache_dir", None)
689
690
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
691
        token = kwargs.pop("token", None)
692
693
694
695
696
697
698
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)

        load_config_kwargs = {
            "cache_dir": cache_dir,
            "force_download": force_download,
            "proxies": proxies,
699
            "token": token,
700
701
702
703
704
            "local_files_only": local_files_only,
            "revision": revision,
        }

        config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
YiYi Xu's avatar
YiYi Xu committed
705
706
        orig_class_name = config["_class_name"]

707
708
        # the `orig_class_name` can be:
        # `- *Pipeline` (for regular text-to-image checkpoint)
709
        #  - `*ControlPipeline` (for Flux tools specific checkpoint)
710
        # `- *Img2ImgPipeline` (for refiner checkpoint)
711
712
713
714
715
716
        if "Img2Img" in orig_class_name:
            to_replace = "Img2ImgPipeline"
        elif "ControlPipeline" in orig_class_name:
            to_replace = "ControlPipeline"
        else:
            to_replace = "Pipeline"
717

YiYi Xu's avatar
YiYi Xu committed
718
        if "controlnet" in kwargs:
719
720
721
722
            if isinstance(kwargs["controlnet"], ControlNetUnionModel):
                orig_class_name = orig_class_name.replace(to_replace, "ControlNetUnion" + to_replace)
            else:
                orig_class_name = orig_class_name.replace(to_replace, "ControlNet" + to_replace)
YiYi Xu's avatar
YiYi Xu committed
723
724
725
        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
726
                orig_class_name = orig_class_name.replace(to_replace, "PAG" + to_replace)
YiYi Xu's avatar
YiYi Xu committed
727

728
729
730
        if to_replace == "ControlPipeline":
            orig_class_name = orig_class_name.replace(to_replace, "ControlImg2ImgPipeline")

YiYi Xu's avatar
YiYi Xu committed
731
732
        image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, orig_class_name)

733
        kwargs = {**load_config_kwargs, **kwargs}
YiYi Xu's avatar
YiYi Xu committed
734
735
736
737
738
739
740
741
742
743
744
        return image_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs)

    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
        Instantiates a image-to-image Pytorch diffusion pipeline from another instantiated diffusion pipeline class.

        The from_pipe() method takes care of returning the correct pipeline class instance by finding the
        image-to-image pipeline linked to the pipeline class using pattern matching on pipeline class name.

        All the modules the pipeline contains will be used to initialize the new pipeline without reallocating
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
745
        additional memory.
YiYi Xu's avatar
YiYi Xu committed
746
747
748
749
750
751
752
753
754
755

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pipeline (`DiffusionPipeline`):
                an instantiated `DiffusionPipeline` object

        Examples:

        ```py
756
        >>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
YiYi Xu's avatar
YiYi Xu committed
757
758

        >>> pipe_t2i = AutoPipelineForText2Image.from_pretrained(
759
        ...     "stable-diffusion-v1-5/stable-diffusion-v1-5", requires_safety_checker=False
YiYi Xu's avatar
YiYi Xu committed
760
761
        ... )

762
763
        >>> pipe_i2i = AutoPipelineForImage2Image.from_pipe(pipe_t2i)
        >>> image = pipe_i2i(prompt, image).images[0]
YiYi Xu's avatar
YiYi Xu committed
764
765
766
767
768
769
770
771
772
        ```
        """

        original_config = dict(pipeline.config)
        original_cls_name = pipeline.__class__.__name__

        # derive the pipeline class to instantiate
        image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, original_cls_name)

773
774
        if "controlnet" in kwargs:
            if kwargs["controlnet"] is not None:
YiYi Xu's avatar
YiYi Xu committed
775
776
777
                to_replace = "Img2ImgPipeline"
                if "PAG" in image_2_image_cls.__name__:
                    to_replace = "PAG" + to_replace
778
779
                image_2_image_cls = _get_task_class(
                    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
780
                    image_2_image_cls.__name__.replace("ControlNet", "").replace(
YiYi Xu's avatar
YiYi Xu committed
781
                        to_replace, "ControlNet" + to_replace
782
                    ),
783
784
785
786
                )
            else:
                image_2_image_cls = _get_task_class(
                    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
YiYi Xu's avatar
YiYi Xu committed
787
788
789
790
791
792
793
794
795
796
797
798
799
800
                    image_2_image_cls.__name__.replace("ControlNet", ""),
                )

        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
                image_2_image_cls = _get_task_class(
                    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
                    image_2_image_cls.__name__.replace("PAG", "").replace("Img2ImgPipeline", "PAGImg2ImgPipeline"),
                )
            else:
                image_2_image_cls = _get_task_class(
                    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
                    image_2_image_cls.__name__.replace("PAG", ""),
801
802
                )

YiYi Xu's avatar
YiYi Xu committed
803
        # define expected module and optional kwargs given the pipeline signature
804
        expected_modules, optional_kwargs = image_2_image_cls._get_signature_keys(image_2_image_cls)
YiYi Xu's avatar
YiYi Xu committed
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)

        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        original_class_obj = {
            k: pipeline.components[k]
            for k, v in pipeline.components.items()
            if k in expected_modules and k not in passed_class_obj
        }

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k, v in original_config.items()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config attribute that were not expected by original pipeline is stored as its private attribute
        # we will pass them as optional arguments if they can be accepted by the pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        image_2_image_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}

        # store unused config as private attribute
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
            for k, v in original_config.items()
            if k not in image_2_image_kwargs
        }

843
844
845
        missing_modules = (
            set(expected_modules) - set(image_2_image_cls._optional_components) - set(image_2_image_kwargs.keys())
        )
YiYi Xu's avatar
YiYi Xu committed
846
847
848

        if len(missing_modules) > 0:
            raise ValueError(
849
                f"Pipeline {image_2_image_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
YiYi Xu's avatar
YiYi Xu committed
850
851
852
853
854
855
856
857
858
859
860
861
            )

        model = image_2_image_cls(**image_2_image_kwargs)
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
        model.register_to_config(**unused_original_config)

        return model


class AutoPipelineForInpainting(ConfigMixin):
    r"""

862
863
864
    [`AutoPipelineForInpainting`] is a generic pipeline class that instantiates an inpainting pipeline class. The
    specific underlying pipeline class is automatically selected from either the
    [`~AutoPipelineForInpainting.from_pretrained`] or [`~AutoPipelineForInpainting.from_pipe`] methods.
YiYi Xu's avatar
YiYi Xu committed
865

866
    This class cannot be instantiated using `__init__()` (throws an error).
YiYi Xu's avatar
YiYi Xu committed
867
868
869
870
871
872
873

    Class attributes:

        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.

    """
874

YiYi Xu's avatar
YiYi Xu committed
875
876
877
878
879
880
881
882
883
884
    config_name = "model_index.json"

    def __init__(self, *args, **kwargs):
        raise EnvironmentError(
            f"{self.__class__.__name__} is designed to be instantiated "
            f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
            f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
        )

    @classmethod
885
    @validate_hf_hub_args
YiYi Xu's avatar
YiYi Xu committed
886
887
888
889
890
891
892
893
894
    def from_pretrained(cls, pretrained_model_or_path, **kwargs):
        r"""
        Instantiates a inpainting Pytorch diffusion pipeline from pretrained pipeline weight.

        The from_pretrained() method takes care of returning the correct pipeline class instance by:
            1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
               config object
            2. Find the inpainting pipeline linked to the pipeline class using pattern matching on pipeline class name.

895
896
        If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetInpaintPipeline`]
        object.
YiYi Xu's avatar
YiYi Xu committed
897
898
899
900
901
902

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        If you get the error message below, you need to finetune the weights for your downstream task:

        ```
903
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
YiYi Xu's avatar
YiYi Xu committed
904
905
906
907
908
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```

        Parameters:
909
            pretrained_model_or_path (`str` or `os.PathLike`, *optional*):
YiYi Xu's avatar
YiYi Xu committed
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
                Can be either:

                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
926

YiYi Xu's avatar
YiYi Xu committed
927
928
929
930
931
932
933
934
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
935
            token (`str` or *bool*, *optional*):
YiYi Xu's avatar
YiYi Xu committed
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            custom_revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
            mirror (`str`, *optional*):
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
                same device.

                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
            max_memory (`Dict`, *optional*):
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
            offload_folder (`str` or `os.PathLike`, *optional*):
                The path to offload weights if device_map contains the value `"disk"`.
            offload_state_dict (`bool`, *optional*):
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
            variant (`str`, *optional*):
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.

        <Tip>

        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
        `huggingface-cli login`.

        </Tip>

        Examples:

        ```py
993
        >>> from diffusers import AutoPipelineForInpainting
YiYi Xu's avatar
YiYi Xu committed
994

995
        >>> pipeline = AutoPipelineForInpainting.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
996
        >>> image = pipeline(prompt, image=init_image, mask_image=mask_image).images[0]
YiYi Xu's avatar
YiYi Xu committed
997
998
        ```
        """
999
        cache_dir = kwargs.pop("cache_dir", None)
1000
1001
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
1002
        token = kwargs.pop("token", None)
1003
1004
1005
1006
1007
1008
1009
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)

        load_config_kwargs = {
            "cache_dir": cache_dir,
            "force_download": force_download,
            "proxies": proxies,
1010
            "token": token,
1011
1012
1013
1014
1015
            "local_files_only": local_files_only,
            "revision": revision,
        }

        config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
YiYi Xu's avatar
YiYi Xu committed
1016
1017
        orig_class_name = config["_class_name"]

1018
1019
        # The `orig_class_name`` can be:
        # `- *InpaintPipeline` (for inpaint-specific checkpoint)
1020
        #  - `*ControlPipeline` (for Flux tools specific checkpoint)
1021
        #  - or *Pipeline (for regular text-to-image checkpoint)
1022
1023
1024
1025
1026
1027
        if "Inpaint" in orig_class_name:
            to_replace = "InpaintPipeline"
        elif "ControlPipeline" in orig_class_name:
            to_replace = "ControlPipeline"
        else:
            to_replace = "Pipeline"
1028

YiYi Xu's avatar
YiYi Xu committed
1029
        if "controlnet" in kwargs:
1030
1031
1032
1033
            if isinstance(kwargs["controlnet"], ControlNetUnionModel):
                orig_class_name = orig_class_name.replace(to_replace, "ControlNetUnion" + to_replace)
            else:
                orig_class_name = orig_class_name.replace(to_replace, "ControlNet" + to_replace)
YiYi Xu's avatar
YiYi Xu committed
1034
1035
1036
        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
1037
                orig_class_name = orig_class_name.replace(to_replace, "PAG" + to_replace)
1038
1039
        if to_replace == "ControlPipeline":
            orig_class_name = orig_class_name.replace(to_replace, "ControlInpaintPipeline")
YiYi Xu's avatar
YiYi Xu committed
1040
1041
        inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, orig_class_name)

1042
        kwargs = {**load_config_kwargs, **kwargs}
YiYi Xu's avatar
YiYi Xu committed
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
        return inpainting_cls.from_pretrained(pretrained_model_or_path, **kwargs)

    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
        Instantiates a inpainting Pytorch diffusion pipeline from another instantiated diffusion pipeline class.

        The from_pipe() method takes care of returning the correct pipeline class instance by finding the inpainting
        pipeline linked to the pipeline class using pattern matching on pipeline class name.

        All the modules the pipeline class contain will be used to initialize the new pipeline without reallocating
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1054
        additional memory.
YiYi Xu's avatar
YiYi Xu committed
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pipeline (`DiffusionPipeline`):
                an instantiated `DiffusionPipeline` object

        Examples:

        ```py
1065
        >>> from diffusers import AutoPipelineForText2Image, AutoPipelineForInpainting
YiYi Xu's avatar
YiYi Xu committed
1066
1067
1068
1069
1070
1071

        >>> pipe_t2i = AutoPipelineForText2Image.from_pretrained(
        ...     "DeepFloyd/IF-I-XL-v1.0", requires_safety_checker=False
        ... )

        >>> pipe_inpaint = AutoPipelineForInpainting.from_pipe(pipe_t2i)
1072
        >>> image = pipe_inpaint(prompt, image=init_image, mask_image=mask_image).images[0]
YiYi Xu's avatar
YiYi Xu committed
1073
1074
1075
1076
1077
1078
1079
1080
        ```
        """
        original_config = dict(pipeline.config)
        original_cls_name = pipeline.__class__.__name__

        # derive the pipeline class to instantiate
        inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, original_cls_name)

1081
1082
1083
1084
        if "controlnet" in kwargs:
            if kwargs["controlnet"] is not None:
                inpainting_cls = _get_task_class(
                    AUTO_INPAINT_PIPELINES_MAPPING,
1085
1086
1087
                    inpainting_cls.__name__.replace("ControlNet", "").replace(
                        "InpaintPipeline", "ControlNetInpaintPipeline"
                    ),
1088
1089
1090
1091
1092
1093
1094
                )
            else:
                inpainting_cls = _get_task_class(
                    AUTO_INPAINT_PIPELINES_MAPPING,
                    inpainting_cls.__name__.replace("ControlNetInpaintPipeline", "InpaintPipeline"),
                )

YiYi Xu's avatar
YiYi Xu committed
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
                inpainting_cls = _get_task_class(
                    AUTO_INPAINT_PIPELINES_MAPPING,
                    inpainting_cls.__name__.replace("PAG", "").replace("InpaintPipeline", "PAGInpaintPipeline"),
                )
            else:
                inpainting_cls = _get_task_class(
                    AUTO_INPAINT_PIPELINES_MAPPING,
                    inpainting_cls.__name__.replace("PAGInpaintPipeline", "InpaintPipeline"),
                )

YiYi Xu's avatar
YiYi Xu committed
1108
        # define expected module and optional kwargs given the pipeline signature
1109
        expected_modules, optional_kwargs = inpainting_cls._get_signature_keys(inpainting_cls)
YiYi Xu's avatar
YiYi Xu committed
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)

        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        original_class_obj = {
            k: pipeline.components[k]
            for k, v in pipeline.components.items()
            if k in expected_modules and k not in passed_class_obj
        }

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k, v in original_config.items()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config that were not expected by original pipeline is stored as private attribute
        # we will pass them as optional arguments if they can be accepted by the pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        inpainting_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}

        # store unused config as private attribute
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
            for k, v in original_config.items()
            if k not in inpainting_kwargs
        }

1148
1149
1150
        missing_modules = (
            set(expected_modules) - set(inpainting_cls._optional_components) - set(inpainting_kwargs.keys())
        )
YiYi Xu's avatar
YiYi Xu committed
1151
1152
1153

        if len(missing_modules) > 0:
            raise ValueError(
1154
                f"Pipeline {inpainting_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
YiYi Xu's avatar
YiYi Xu committed
1155
1156
1157
1158
1159
1160
1161
            )

        model = inpainting_cls(**inpainting_kwargs)
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
        model.register_to_config(**unused_original_config)

        return model