auto_pipeline.py 54.3 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
# coding=utf-8
2
# Copyright 2024 The HuggingFace Inc. team.
YiYi Xu's avatar
YiYi Xu committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import OrderedDict

18
19
from huggingface_hub.utils import validate_hf_hub_args

YiYi Xu's avatar
YiYi Xu committed
20
from ..configuration_utils import ConfigMixin
21
from ..utils import is_sentencepiece_available
22
from .aura_flow import AuraFlowPipeline
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
23
from .cogview3 import CogView3PlusPipeline
YiYi Xu's avatar
YiYi Xu committed
24
25
26
27
from .controlnet import (
    StableDiffusionControlNetImg2ImgPipeline,
    StableDiffusionControlNetInpaintPipeline,
    StableDiffusionControlNetPipeline,
28
    StableDiffusionXLControlNetImg2ImgPipeline,
29
    StableDiffusionXLControlNetInpaintPipeline,
YiYi Xu's avatar
YiYi Xu committed
30
31
32
    StableDiffusionXLControlNetPipeline,
)
from .deepfloyd_if import IFImg2ImgPipeline, IFInpaintingPipeline, IFPipeline
33
34
35
36
37
38
39
40
from .flux import (
    FluxControlNetImg2ImgPipeline,
    FluxControlNetInpaintPipeline,
    FluxControlNetPipeline,
    FluxImg2ImgPipeline,
    FluxInpaintPipeline,
    FluxPipeline,
)
41
from .hunyuandit import HunyuanDiTPipeline
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from .kandinsky import (
    KandinskyCombinedPipeline,
    KandinskyImg2ImgCombinedPipeline,
    KandinskyImg2ImgPipeline,
    KandinskyInpaintCombinedPipeline,
    KandinskyInpaintPipeline,
    KandinskyPipeline,
)
from .kandinsky2_2 import (
    KandinskyV22CombinedPipeline,
    KandinskyV22Img2ImgCombinedPipeline,
    KandinskyV22Img2ImgPipeline,
    KandinskyV22InpaintCombinedPipeline,
    KandinskyV22InpaintPipeline,
    KandinskyV22Pipeline,
)
58
from .kandinsky3 import Kandinsky3Img2ImgPipeline, Kandinsky3Pipeline
59
from .latent_consistency_models import LatentConsistencyModelImg2ImgPipeline, LatentConsistencyModelPipeline
60
from .lumina import LuminaText2ImgPipeline
YiYi Xu's avatar
YiYi Xu committed
61
from .pag import (
62
    HunyuanDiTPAGPipeline,
63
    PixArtSigmaPAGPipeline,
64
    StableDiffusion3PAGImg2ImgPipeline,
65
    StableDiffusion3PAGPipeline,
66
    StableDiffusionControlNetPAGInpaintPipeline,
67
    StableDiffusionControlNetPAGPipeline,
68
    StableDiffusionPAGImg2ImgPipeline,
69
    StableDiffusionPAGInpaintPipeline,
70
    StableDiffusionPAGPipeline,
71
    StableDiffusionXLControlNetPAGImg2ImgPipeline,
YiYi Xu's avatar
YiYi Xu committed
72
73
74
75
76
    StableDiffusionXLControlNetPAGPipeline,
    StableDiffusionXLPAGImg2ImgPipeline,
    StableDiffusionXLPAGInpaintPipeline,
    StableDiffusionXLPAGPipeline,
)
77
from .pixart_alpha import PixArtAlphaPipeline, PixArtSigmaPipeline
78
from .stable_cascade import StableCascadeCombinedPipeline, StableCascadeDecoderPipeline
YiYi Xu's avatar
YiYi Xu committed
79
80
81
82
83
from .stable_diffusion import (
    StableDiffusionImg2ImgPipeline,
    StableDiffusionInpaintPipeline,
    StableDiffusionPipeline,
)
84
85
from .stable_diffusion_3 import (
    StableDiffusion3Img2ImgPipeline,
86
    StableDiffusion3InpaintPipeline,
87
88
    StableDiffusion3Pipeline,
)
YiYi Xu's avatar
YiYi Xu committed
89
90
91
92
93
from .stable_diffusion_xl import (
    StableDiffusionXLImg2ImgPipeline,
    StableDiffusionXLInpaintPipeline,
    StableDiffusionXLPipeline,
)
Kashif Rasul's avatar
Kashif Rasul committed
94
from .wuerstchen import WuerstchenCombinedPipeline, WuerstchenDecoderPipeline
YiYi Xu's avatar
YiYi Xu committed
95
96
97
98
99
100


AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
    [
        ("stable-diffusion", StableDiffusionPipeline),
        ("stable-diffusion-xl", StableDiffusionXLPipeline),
101
        ("stable-diffusion-3", StableDiffusion3Pipeline),
102
        ("stable-diffusion-3-pag", StableDiffusion3PAGPipeline),
YiYi Xu's avatar
YiYi Xu committed
103
        ("if", IFPipeline),
104
        ("hunyuan", HunyuanDiTPipeline),
105
        ("hunyuan-pag", HunyuanDiTPAGPipeline),
106
107
        ("kandinsky", KandinskyCombinedPipeline),
        ("kandinsky22", KandinskyV22CombinedPipeline),
108
        ("kandinsky3", Kandinsky3Pipeline),
YiYi Xu's avatar
YiYi Xu committed
109
110
        ("stable-diffusion-controlnet", StableDiffusionControlNetPipeline),
        ("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetPipeline),
Kashif Rasul's avatar
Kashif Rasul committed
111
        ("wuerstchen", WuerstchenCombinedPipeline),
112
        ("cascade", StableCascadeCombinedPipeline),
113
        ("lcm", LatentConsistencyModelPipeline),
114
115
        ("pixart-alpha", PixArtAlphaPipeline),
        ("pixart-sigma", PixArtSigmaPipeline),
116
        ("stable-diffusion-pag", StableDiffusionPAGPipeline),
117
        ("stable-diffusion-controlnet-pag", StableDiffusionControlNetPAGPipeline),
YiYi Xu's avatar
YiYi Xu committed
118
119
        ("stable-diffusion-xl-pag", StableDiffusionXLPAGPipeline),
        ("stable-diffusion-xl-controlnet-pag", StableDiffusionXLControlNetPAGPipeline),
120
        ("pixart-sigma-pag", PixArtSigmaPAGPipeline),
121
        ("auraflow", AuraFlowPipeline),
Sayak Paul's avatar
Sayak Paul committed
122
        ("flux", FluxPipeline),
123
        ("flux-controlnet", FluxControlNetPipeline),
124
        ("lumina", LuminaText2ImgPipeline),
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
125
        ("cogview3", CogView3PlusPipeline),
YiYi Xu's avatar
YiYi Xu committed
126
127
128
129
130
131
132
    ]
)

AUTO_IMAGE2IMAGE_PIPELINES_MAPPING = OrderedDict(
    [
        ("stable-diffusion", StableDiffusionImg2ImgPipeline),
        ("stable-diffusion-xl", StableDiffusionXLImg2ImgPipeline),
133
        ("stable-diffusion-3", StableDiffusion3Img2ImgPipeline),
134
        ("stable-diffusion-3-pag", StableDiffusion3PAGImg2ImgPipeline),
YiYi Xu's avatar
YiYi Xu committed
135
        ("if", IFImg2ImgPipeline),
136
137
        ("kandinsky", KandinskyImg2ImgCombinedPipeline),
        ("kandinsky22", KandinskyV22Img2ImgCombinedPipeline),
138
        ("kandinsky3", Kandinsky3Img2ImgPipeline),
YiYi Xu's avatar
YiYi Xu committed
139
        ("stable-diffusion-controlnet", StableDiffusionControlNetImg2ImgPipeline),
140
        ("stable-diffusion-pag", StableDiffusionPAGImg2ImgPipeline),
141
        ("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetImg2ImgPipeline),
YiYi Xu's avatar
YiYi Xu committed
142
        ("stable-diffusion-xl-pag", StableDiffusionXLPAGImg2ImgPipeline),
143
        ("stable-diffusion-xl-controlnet-pag", StableDiffusionXLControlNetPAGImg2ImgPipeline),
144
        ("lcm", LatentConsistencyModelImg2ImgPipeline),
145
        ("flux", FluxImg2ImgPipeline),
146
        ("flux-controlnet", FluxControlNetImg2ImgPipeline),
YiYi Xu's avatar
YiYi Xu committed
147
148
149
150
151
152
153
    ]
)

AUTO_INPAINT_PIPELINES_MAPPING = OrderedDict(
    [
        ("stable-diffusion", StableDiffusionInpaintPipeline),
        ("stable-diffusion-xl", StableDiffusionXLInpaintPipeline),
154
        ("stable-diffusion-3", StableDiffusion3InpaintPipeline),
YiYi Xu's avatar
YiYi Xu committed
155
        ("if", IFInpaintingPipeline),
156
157
158
        ("kandinsky", KandinskyInpaintCombinedPipeline),
        ("kandinsky22", KandinskyV22InpaintCombinedPipeline),
        ("stable-diffusion-controlnet", StableDiffusionControlNetInpaintPipeline),
159
        ("stable-diffusion-controlnet-pag", StableDiffusionControlNetPAGInpaintPipeline),
160
        ("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetInpaintPipeline),
YiYi Xu's avatar
YiYi Xu committed
161
        ("stable-diffusion-xl-pag", StableDiffusionXLPAGInpaintPipeline),
162
        ("flux", FluxInpaintPipeline),
163
        ("flux-controlnet", FluxControlNetInpaintPipeline),
164
        ("stable-diffusion-pag", StableDiffusionPAGInpaintPipeline),
165
166
167
168
169
170
171
    ]
)

_AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict(
    [
        ("kandinsky", KandinskyPipeline),
        ("kandinsky22", KandinskyV22Pipeline),
Kashif Rasul's avatar
Kashif Rasul committed
172
        ("wuerstchen", WuerstchenDecoderPipeline),
173
        ("cascade", StableCascadeDecoderPipeline),
174
175
176
177
178
179
180
181
182
183
    ]
)
_AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict(
    [
        ("kandinsky", KandinskyImg2ImgPipeline),
        ("kandinsky22", KandinskyV22Img2ImgPipeline),
    ]
)
_AUTO_INPAINT_DECODER_PIPELINES_MAPPING = OrderedDict(
    [
YiYi Xu's avatar
YiYi Xu committed
184
185
186
187
188
        ("kandinsky", KandinskyInpaintPipeline),
        ("kandinsky22", KandinskyV22InpaintPipeline),
    ]
)

189
if is_sentencepiece_available():
190
    from .kolors import KolorsImg2ImgPipeline, KolorsPipeline
Álvaro Somoza's avatar
Álvaro Somoza committed
191
    from .pag import KolorsPAGPipeline
192
193

    AUTO_TEXT2IMAGE_PIPELINES_MAPPING["kolors"] = KolorsPipeline
Álvaro Somoza's avatar
Álvaro Somoza committed
194
    AUTO_TEXT2IMAGE_PIPELINES_MAPPING["kolors-pag"] = KolorsPAGPipeline
195
    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["kolors"] = KolorsImg2ImgPipeline
196

YiYi Xu's avatar
YiYi Xu committed
197
198
199
200
SUPPORTED_TASKS_MAPPINGS = [
    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
    AUTO_INPAINT_PIPELINES_MAPPING,
201
202
203
    _AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING,
    _AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING,
    _AUTO_INPAINT_DECODER_PIPELINES_MAPPING,
YiYi Xu's avatar
YiYi Xu committed
204
205
206
]


207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
def _get_connected_pipeline(pipeline_cls):
    # for now connected pipelines can only be loaded from decoder pipelines, such as kandinsky-community/kandinsky-2-2-decoder
    if pipeline_cls in _AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING.values():
        return _get_task_class(
            AUTO_TEXT2IMAGE_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False
        )
    if pipeline_cls in _AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING.values():
        return _get_task_class(
            AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False
        )
    if pipeline_cls in _AUTO_INPAINT_DECODER_PIPELINES_MAPPING.values():
        return _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False)


def _get_task_class(mapping, pipeline_class_name, throw_error_if_not_exist: bool = True):
YiYi Xu's avatar
YiYi Xu committed
222
223
224
225
226
227
228
229
230
231
232
233
    def get_model(pipeline_class_name):
        for task_mapping in SUPPORTED_TASKS_MAPPINGS:
            for model_name, pipeline in task_mapping.items():
                if pipeline.__name__ == pipeline_class_name:
                    return model_name

    model_name = get_model(pipeline_class_name)

    if model_name is not None:
        task_class = mapping.get(model_name, None)
        if task_class is not None:
            return task_class
234
235
236

    if throw_error_if_not_exist:
        raise ValueError(f"AutoPipeline can't find a pipeline linked to {pipeline_class_name} for {model_name}")
YiYi Xu's avatar
YiYi Xu committed
237
238
239
240
241


class AutoPipelineForText2Image(ConfigMixin):
    r"""

242
243
244
    [`AutoPipelineForText2Image`] is a generic pipeline class that instantiates a text-to-image pipeline class. The
    specific underlying pipeline class is automatically selected from either the
    [`~AutoPipelineForText2Image.from_pretrained`] or [`~AutoPipelineForText2Image.from_pipe`] methods.
YiYi Xu's avatar
YiYi Xu committed
245

246
    This class cannot be instantiated using `__init__()` (throws an error).
YiYi Xu's avatar
YiYi Xu committed
247
248
249
250
251
252
253

    Class attributes:

        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.

    """
254

YiYi Xu's avatar
YiYi Xu committed
255
256
257
258
259
260
261
262
263
264
    config_name = "model_index.json"

    def __init__(self, *args, **kwargs):
        raise EnvironmentError(
            f"{self.__class__.__name__} is designed to be instantiated "
            f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
            f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
        )

    @classmethod
265
    @validate_hf_hub_args
YiYi Xu's avatar
YiYi Xu committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    def from_pretrained(cls, pretrained_model_or_path, **kwargs):
        r"""
        Instantiates a text-to-image Pytorch diffusion pipeline from pretrained pipeline weight.

        The from_pretrained() method takes care of returning the correct pipeline class instance by:
            1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
               config object
            2. Find the text-to-image pipeline linked to the pipeline class using pattern matching on pipeline class
               name.

        If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetPipeline`] object.

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        If you get the error message below, you need to finetune the weights for your downstream task:

        ```
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```

        Parameters:
289
            pretrained_model_or_path (`str` or `os.PathLike`, *optional*):
YiYi Xu's avatar
YiYi Xu committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
                Can be either:

                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
306

YiYi Xu's avatar
YiYi Xu committed
307
308
309
310
311
312
313
314
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
315
            token (`str` or *bool*, *optional*):
YiYi Xu's avatar
YiYi Xu committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            custom_revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
            mirror (`str`, *optional*):
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
                same device.

                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
            max_memory (`Dict`, *optional*):
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
            offload_folder (`str` or `os.PathLike`, *optional*):
                The path to offload weights if device_map contains the value `"disk"`.
            offload_state_dict (`bool`, *optional*):
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
            variant (`str`, *optional*):
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.

        <Tip>

        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
        `huggingface-cli login`.

        </Tip>

        Examples:

        ```py
373
        >>> from diffusers import AutoPipelineForText2Image
YiYi Xu's avatar
YiYi Xu committed
374

375
        >>> pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5")
376
        >>> image = pipeline(prompt).images[0]
YiYi Xu's avatar
YiYi Xu committed
377
378
        ```
        """
379
        cache_dir = kwargs.pop("cache_dir", None)
380
381
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
382
        token = kwargs.pop("token", None)
383
384
385
386
387
388
389
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)

        load_config_kwargs = {
            "cache_dir": cache_dir,
            "force_download": force_download,
            "proxies": proxies,
390
            "token": token,
391
392
393
394
395
            "local_files_only": local_files_only,
            "revision": revision,
        }

        config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
YiYi Xu's avatar
YiYi Xu committed
396
397
398
399
        orig_class_name = config["_class_name"]

        if "controlnet" in kwargs:
            orig_class_name = config["_class_name"].replace("Pipeline", "ControlNetPipeline")
YiYi Xu's avatar
YiYi Xu committed
400
401
402
403
        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
                orig_class_name = orig_class_name.replace("Pipeline", "PAGPipeline")
YiYi Xu's avatar
YiYi Xu committed
404
405
406

        text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, orig_class_name)

407
        kwargs = {**load_config_kwargs, **kwargs}
YiYi Xu's avatar
YiYi Xu committed
408
409
410
411
412
413
414
415
416
417
418
        return text_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs)

    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
        Instantiates a text-to-image Pytorch diffusion pipeline from another instantiated diffusion pipeline class.

        The from_pipe() method takes care of returning the correct pipeline class instance by finding the text-to-image
        pipeline linked to the pipeline class using pattern matching on pipeline class name.

        All the modules the pipeline contains will be used to initialize the new pipeline without reallocating
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
419
        additional memory.
YiYi Xu's avatar
YiYi Xu committed
420
421
422
423
424
425
426
427

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pipeline (`DiffusionPipeline`):
                an instantiated `DiffusionPipeline` object

        ```py
428
        >>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
YiYi Xu's avatar
YiYi Xu committed
429
430
431
432
433

        >>> pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
        ...     "runwayml/stable-diffusion-v1-5", requires_safety_checker=False
        ... )

434
435
        >>> pipe_t2i = AutoPipelineForText2Image.from_pipe(pipe_i2i)
        >>> image = pipe_t2i(prompt).images[0]
YiYi Xu's avatar
YiYi Xu committed
436
437
438
439
440
441
442
443
444
        ```
        """

        original_config = dict(pipeline.config)
        original_cls_name = pipeline.__class__.__name__

        # derive the pipeline class to instantiate
        text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, original_cls_name)

445
446
        if "controlnet" in kwargs:
            if kwargs["controlnet"] is not None:
YiYi Xu's avatar
YiYi Xu committed
447
                to_replace = "PAGPipeline" if "PAG" in text_2_image_cls.__name__ else "Pipeline"
448
449
                text_2_image_cls = _get_task_class(
                    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
YiYi Xu's avatar
YiYi Xu committed
450
                    text_2_image_cls.__name__.replace("ControlNet", "").replace(to_replace, "ControlNet" + to_replace),
451
452
453
454
                )
            else:
                text_2_image_cls = _get_task_class(
                    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
YiYi Xu's avatar
YiYi Xu committed
455
456
457
458
459
460
461
462
463
464
465
466
467
468
                    text_2_image_cls.__name__.replace("ControlNet", ""),
                )

        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
                text_2_image_cls = _get_task_class(
                    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
                    text_2_image_cls.__name__.replace("PAG", "").replace("Pipeline", "PAGPipeline"),
                )
            else:
                text_2_image_cls = _get_task_class(
                    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
                    text_2_image_cls.__name__.replace("PAG", ""),
469
470
                )

YiYi Xu's avatar
YiYi Xu committed
471
        # define expected module and optional kwargs given the pipeline signature
472
        expected_modules, optional_kwargs = text_2_image_cls._get_signature_keys(text_2_image_cls)
YiYi Xu's avatar
YiYi Xu committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)

        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        original_class_obj = {
            k: pipeline.components[k]
            for k, v in pipeline.components.items()
            if k in expected_modules and k not in passed_class_obj
        }

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k, v in original_config.items()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config that were not expected by original pipeline is stored as private attribute
        # we will pass them as optional arguments if they can be accepted by the pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        text_2_image_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}

        # store unused config as private attribute
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
            for k, v in original_config.items()
            if k not in text_2_image_kwargs
        }

        missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(text_2_image_kwargs.keys())

        if len(missing_modules) > 0:
            raise ValueError(
515
                f"Pipeline {text_2_image_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
YiYi Xu's avatar
YiYi Xu committed
516
517
518
519
520
521
522
523
524
525
526
527
            )

        model = text_2_image_cls(**text_2_image_kwargs)
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
        model.register_to_config(**unused_original_config)

        return model


class AutoPipelineForImage2Image(ConfigMixin):
    r"""

528
529
530
    [`AutoPipelineForImage2Image`] is a generic pipeline class that instantiates an image-to-image pipeline class. The
    specific underlying pipeline class is automatically selected from either the
    [`~AutoPipelineForImage2Image.from_pretrained`] or [`~AutoPipelineForImage2Image.from_pipe`] methods.
YiYi Xu's avatar
YiYi Xu committed
531

532
    This class cannot be instantiated using `__init__()` (throws an error).
YiYi Xu's avatar
YiYi Xu committed
533
534
535
536
537
538
539

    Class attributes:

        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.

    """
540

YiYi Xu's avatar
YiYi Xu committed
541
542
543
544
545
546
547
548
549
550
    config_name = "model_index.json"

    def __init__(self, *args, **kwargs):
        raise EnvironmentError(
            f"{self.__class__.__name__} is designed to be instantiated "
            f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
            f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
        )

    @classmethod
551
    @validate_hf_hub_args
YiYi Xu's avatar
YiYi Xu committed
552
553
554
555
556
557
558
559
560
561
    def from_pretrained(cls, pretrained_model_or_path, **kwargs):
        r"""
        Instantiates a image-to-image Pytorch diffusion pipeline from pretrained pipeline weight.

        The from_pretrained() method takes care of returning the correct pipeline class instance by:
            1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
               config object
            2. Find the image-to-image pipeline linked to the pipeline class using pattern matching on pipeline class
               name.

562
563
        If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetImg2ImgPipeline`]
        object.
YiYi Xu's avatar
YiYi Xu committed
564
565
566
567
568
569
570
571
572
573
574
575

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        If you get the error message below, you need to finetune the weights for your downstream task:

        ```
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```

        Parameters:
576
            pretrained_model_or_path (`str` or `os.PathLike`, *optional*):
YiYi Xu's avatar
YiYi Xu committed
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
                Can be either:

                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
593

YiYi Xu's avatar
YiYi Xu committed
594
595
596
597
598
599
600
601
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
602
            token (`str` or *bool*, *optional*):
YiYi Xu's avatar
YiYi Xu committed
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            custom_revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
            mirror (`str`, *optional*):
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
                same device.

                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
            max_memory (`Dict`, *optional*):
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
            offload_folder (`str` or `os.PathLike`, *optional*):
                The path to offload weights if device_map contains the value `"disk"`.
            offload_state_dict (`bool`, *optional*):
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
            variant (`str`, *optional*):
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.

        <Tip>

        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
        `huggingface-cli login`.

        </Tip>

        Examples:

        ```py
660
        >>> from diffusers import AutoPipelineForImage2Image
YiYi Xu's avatar
YiYi Xu committed
661

662
663
        >>> pipeline = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> image = pipeline(prompt, image).images[0]
YiYi Xu's avatar
YiYi Xu committed
664
665
        ```
        """
666
        cache_dir = kwargs.pop("cache_dir", None)
667
668
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
669
        token = kwargs.pop("token", None)
670
671
672
673
674
675
676
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)

        load_config_kwargs = {
            "cache_dir": cache_dir,
            "force_download": force_download,
            "proxies": proxies,
677
            "token": token,
678
679
680
681
682
            "local_files_only": local_files_only,
            "revision": revision,
        }

        config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
YiYi Xu's avatar
YiYi Xu committed
683
684
        orig_class_name = config["_class_name"]

685
686
687
688
689
        # the `orig_class_name` can be:
        # `- *Pipeline` (for regular text-to-image checkpoint)
        # `- *Img2ImgPipeline` (for refiner checkpoint)
        to_replace = "Img2ImgPipeline" if "Img2Img" in config["_class_name"] else "Pipeline"

YiYi Xu's avatar
YiYi Xu committed
690
        if "controlnet" in kwargs:
691
            orig_class_name = orig_class_name.replace(to_replace, "ControlNet" + to_replace)
YiYi Xu's avatar
YiYi Xu committed
692
693
694
        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
695
                orig_class_name = orig_class_name.replace(to_replace, "PAG" + to_replace)
YiYi Xu's avatar
YiYi Xu committed
696
697
698

        image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, orig_class_name)

699
        kwargs = {**load_config_kwargs, **kwargs}
YiYi Xu's avatar
YiYi Xu committed
700
701
702
703
704
705
706
707
708
709
710
        return image_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs)

    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
        Instantiates a image-to-image Pytorch diffusion pipeline from another instantiated diffusion pipeline class.

        The from_pipe() method takes care of returning the correct pipeline class instance by finding the
        image-to-image pipeline linked to the pipeline class using pattern matching on pipeline class name.

        All the modules the pipeline contains will be used to initialize the new pipeline without reallocating
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
711
        additional memory.
YiYi Xu's avatar
YiYi Xu committed
712
713
714
715
716
717
718
719
720
721

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pipeline (`DiffusionPipeline`):
                an instantiated `DiffusionPipeline` object

        Examples:

        ```py
722
        >>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
YiYi Xu's avatar
YiYi Xu committed
723
724
725
726
727

        >>> pipe_t2i = AutoPipelineForText2Image.from_pretrained(
        ...     "runwayml/stable-diffusion-v1-5", requires_safety_checker=False
        ... )

728
729
        >>> pipe_i2i = AutoPipelineForImage2Image.from_pipe(pipe_t2i)
        >>> image = pipe_i2i(prompt, image).images[0]
YiYi Xu's avatar
YiYi Xu committed
730
731
732
733
734
735
736
737
738
        ```
        """

        original_config = dict(pipeline.config)
        original_cls_name = pipeline.__class__.__name__

        # derive the pipeline class to instantiate
        image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, original_cls_name)

739
740
        if "controlnet" in kwargs:
            if kwargs["controlnet"] is not None:
YiYi Xu's avatar
YiYi Xu committed
741
742
743
                to_replace = "Img2ImgPipeline"
                if "PAG" in image_2_image_cls.__name__:
                    to_replace = "PAG" + to_replace
744
745
                image_2_image_cls = _get_task_class(
                    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
746
                    image_2_image_cls.__name__.replace("ControlNet", "").replace(
YiYi Xu's avatar
YiYi Xu committed
747
                        to_replace, "ControlNet" + to_replace
748
                    ),
749
750
751
752
                )
            else:
                image_2_image_cls = _get_task_class(
                    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
YiYi Xu's avatar
YiYi Xu committed
753
754
755
756
757
758
759
760
761
762
763
764
765
766
                    image_2_image_cls.__name__.replace("ControlNet", ""),
                )

        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
                image_2_image_cls = _get_task_class(
                    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
                    image_2_image_cls.__name__.replace("PAG", "").replace("Img2ImgPipeline", "PAGImg2ImgPipeline"),
                )
            else:
                image_2_image_cls = _get_task_class(
                    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
                    image_2_image_cls.__name__.replace("PAG", ""),
767
768
                )

YiYi Xu's avatar
YiYi Xu committed
769
        # define expected module and optional kwargs given the pipeline signature
770
        expected_modules, optional_kwargs = image_2_image_cls._get_signature_keys(image_2_image_cls)
YiYi Xu's avatar
YiYi Xu committed
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)

        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        original_class_obj = {
            k: pipeline.components[k]
            for k, v in pipeline.components.items()
            if k in expected_modules and k not in passed_class_obj
        }

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k, v in original_config.items()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config attribute that were not expected by original pipeline is stored as its private attribute
        # we will pass them as optional arguments if they can be accepted by the pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        image_2_image_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}

        # store unused config as private attribute
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
            for k, v in original_config.items()
            if k not in image_2_image_kwargs
        }

        missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(image_2_image_kwargs.keys())

        if len(missing_modules) > 0:
            raise ValueError(
813
                f"Pipeline {image_2_image_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
YiYi Xu's avatar
YiYi Xu committed
814
815
816
817
818
819
820
821
822
823
824
825
            )

        model = image_2_image_cls(**image_2_image_kwargs)
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
        model.register_to_config(**unused_original_config)

        return model


class AutoPipelineForInpainting(ConfigMixin):
    r"""

826
827
828
    [`AutoPipelineForInpainting`] is a generic pipeline class that instantiates an inpainting pipeline class. The
    specific underlying pipeline class is automatically selected from either the
    [`~AutoPipelineForInpainting.from_pretrained`] or [`~AutoPipelineForInpainting.from_pipe`] methods.
YiYi Xu's avatar
YiYi Xu committed
829

830
    This class cannot be instantiated using `__init__()` (throws an error).
YiYi Xu's avatar
YiYi Xu committed
831
832
833
834
835
836
837

    Class attributes:

        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.

    """
838

YiYi Xu's avatar
YiYi Xu committed
839
840
841
842
843
844
845
846
847
848
    config_name = "model_index.json"

    def __init__(self, *args, **kwargs):
        raise EnvironmentError(
            f"{self.__class__.__name__} is designed to be instantiated "
            f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
            f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
        )

    @classmethod
849
    @validate_hf_hub_args
YiYi Xu's avatar
YiYi Xu committed
850
851
852
853
854
855
856
857
858
    def from_pretrained(cls, pretrained_model_or_path, **kwargs):
        r"""
        Instantiates a inpainting Pytorch diffusion pipeline from pretrained pipeline weight.

        The from_pretrained() method takes care of returning the correct pipeline class instance by:
            1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
               config object
            2. Find the inpainting pipeline linked to the pipeline class using pattern matching on pipeline class name.

859
860
        If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetInpaintPipeline`]
        object.
YiYi Xu's avatar
YiYi Xu committed
861
862
863
864
865
866
867
868
869
870
871
872

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        If you get the error message below, you need to finetune the weights for your downstream task:

        ```
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```

        Parameters:
873
            pretrained_model_or_path (`str` or `os.PathLike`, *optional*):
YiYi Xu's avatar
YiYi Xu committed
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
                Can be either:

                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
890

YiYi Xu's avatar
YiYi Xu committed
891
892
893
894
895
896
897
898
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
899
            token (`str` or *bool*, *optional*):
YiYi Xu's avatar
YiYi Xu committed
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            custom_revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
            mirror (`str`, *optional*):
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
                same device.

                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
            max_memory (`Dict`, *optional*):
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
            offload_folder (`str` or `os.PathLike`, *optional*):
                The path to offload weights if device_map contains the value `"disk"`.
            offload_state_dict (`bool`, *optional*):
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
            variant (`str`, *optional*):
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.

        <Tip>

        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
        `huggingface-cli login`.

        </Tip>

        Examples:

        ```py
957
        >>> from diffusers import AutoPipelineForInpainting
YiYi Xu's avatar
YiYi Xu committed
958

959
960
        >>> pipeline = AutoPipelineForInpainting.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> image = pipeline(prompt, image=init_image, mask_image=mask_image).images[0]
YiYi Xu's avatar
YiYi Xu committed
961
962
        ```
        """
963
        cache_dir = kwargs.pop("cache_dir", None)
964
965
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
966
        token = kwargs.pop("token", None)
967
968
969
970
971
972
973
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)

        load_config_kwargs = {
            "cache_dir": cache_dir,
            "force_download": force_download,
            "proxies": proxies,
974
            "token": token,
975
976
977
978
979
            "local_files_only": local_files_only,
            "revision": revision,
        }

        config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
YiYi Xu's avatar
YiYi Xu committed
980
981
        orig_class_name = config["_class_name"]

982
983
984
985
986
        # The `orig_class_name`` can be:
        # `- *InpaintPipeline` (for inpaint-specific checkpoint)
        #  - or *Pipeline (for regular text-to-image checkpoint)
        to_replace = "InpaintPipeline" if "Inpaint" in config["_class_name"] else "Pipeline"

YiYi Xu's avatar
YiYi Xu committed
987
        if "controlnet" in kwargs:
988
            orig_class_name = orig_class_name.replace(to_replace, "ControlNet" + to_replace)
YiYi Xu's avatar
YiYi Xu committed
989
990
991
        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
992
                orig_class_name = orig_class_name.replace(to_replace, "PAG" + to_replace)
YiYi Xu's avatar
YiYi Xu committed
993
994
        inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, orig_class_name)

995
        kwargs = {**load_config_kwargs, **kwargs}
YiYi Xu's avatar
YiYi Xu committed
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
        return inpainting_cls.from_pretrained(pretrained_model_or_path, **kwargs)

    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
        Instantiates a inpainting Pytorch diffusion pipeline from another instantiated diffusion pipeline class.

        The from_pipe() method takes care of returning the correct pipeline class instance by finding the inpainting
        pipeline linked to the pipeline class using pattern matching on pipeline class name.

        All the modules the pipeline class contain will be used to initialize the new pipeline without reallocating
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1007
        additional memory.
YiYi Xu's avatar
YiYi Xu committed
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pipeline (`DiffusionPipeline`):
                an instantiated `DiffusionPipeline` object

        Examples:

        ```py
1018
        >>> from diffusers import AutoPipelineForText2Image, AutoPipelineForInpainting
YiYi Xu's avatar
YiYi Xu committed
1019
1020
1021
1022
1023
1024

        >>> pipe_t2i = AutoPipelineForText2Image.from_pretrained(
        ...     "DeepFloyd/IF-I-XL-v1.0", requires_safety_checker=False
        ... )

        >>> pipe_inpaint = AutoPipelineForInpainting.from_pipe(pipe_t2i)
1025
        >>> image = pipe_inpaint(prompt, image=init_image, mask_image=mask_image).images[0]
YiYi Xu's avatar
YiYi Xu committed
1026
1027
1028
1029
1030
1031
1032
1033
        ```
        """
        original_config = dict(pipeline.config)
        original_cls_name = pipeline.__class__.__name__

        # derive the pipeline class to instantiate
        inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, original_cls_name)

1034
1035
1036
1037
        if "controlnet" in kwargs:
            if kwargs["controlnet"] is not None:
                inpainting_cls = _get_task_class(
                    AUTO_INPAINT_PIPELINES_MAPPING,
1038
1039
1040
                    inpainting_cls.__name__.replace("ControlNet", "").replace(
                        "InpaintPipeline", "ControlNetInpaintPipeline"
                    ),
1041
1042
1043
1044
1045
1046
1047
                )
            else:
                inpainting_cls = _get_task_class(
                    AUTO_INPAINT_PIPELINES_MAPPING,
                    inpainting_cls.__name__.replace("ControlNetInpaintPipeline", "InpaintPipeline"),
                )

YiYi Xu's avatar
YiYi Xu committed
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
                inpainting_cls = _get_task_class(
                    AUTO_INPAINT_PIPELINES_MAPPING,
                    inpainting_cls.__name__.replace("PAG", "").replace("InpaintPipeline", "PAGInpaintPipeline"),
                )
            else:
                inpainting_cls = _get_task_class(
                    AUTO_INPAINT_PIPELINES_MAPPING,
                    inpainting_cls.__name__.replace("PAGInpaintPipeline", "InpaintPipeline"),
                )

YiYi Xu's avatar
YiYi Xu committed
1061
        # define expected module and optional kwargs given the pipeline signature
1062
        expected_modules, optional_kwargs = inpainting_cls._get_signature_keys(inpainting_cls)
YiYi Xu's avatar
YiYi Xu committed
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)

        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        original_class_obj = {
            k: pipeline.components[k]
            for k, v in pipeline.components.items()
            if k in expected_modules and k not in passed_class_obj
        }

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k, v in original_config.items()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config that were not expected by original pipeline is stored as private attribute
        # we will pass them as optional arguments if they can be accepted by the pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        inpainting_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}

        # store unused config as private attribute
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
            for k, v in original_config.items()
            if k not in inpainting_kwargs
        }

        missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(inpainting_kwargs.keys())

        if len(missing_modules) > 0:
            raise ValueError(
1105
                f"Pipeline {inpainting_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
YiYi Xu's avatar
YiYi Xu committed
1106
1107
1108
1109
1110
1111
1112
            )

        model = inpainting_cls(**inpainting_kwargs)
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
        model.register_to_config(**unused_original_config)

        return model