training_utils.py 25.6 KB
Newer Older
1
import contextlib
anton-l's avatar
anton-l committed
2
import copy
3
import gc
4
import math
5
import random
6
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
anton-l's avatar
anton-l committed
7

8
import numpy as np
anton-l's avatar
anton-l committed
9
10
import torch

11
from .models import UNet2DConditionModel
12
from .schedulers import SchedulerMixin
13
14
15
16
17
from .utils import (
    convert_state_dict_to_diffusers,
    convert_state_dict_to_peft,
    deprecate,
    is_peft_available,
Mengqing Cao's avatar
Mengqing Cao committed
18
    is_torch_npu_available,
YiYi Xu's avatar
YiYi Xu committed
19
    is_torchvision_available,
20
21
    is_transformers_available,
)
22
23
24
25


if is_transformers_available():
    import transformers
26

27
28
29
    if transformers.integrations.deepspeed.is_deepspeed_zero3_enabled():
        import deepspeed

30
31
32
if is_peft_available():
    from peft import set_peft_model_state_dict

33
34
35
if is_torchvision_available():
    from torchvision import transforms

Mengqing Cao's avatar
Mengqing Cao committed
36
37
38
if is_torch_npu_available():
    import torch_npu  # noqa: F401

anton-l's avatar
anton-l committed
39

40
41
def set_seed(seed: int):
    """
42
    Helper function for reproducible behavior to set the seed in `random`, `numpy`, `torch`.
43
44

    Args:
45
        seed (`int`): The seed to set.
46
47
48

    Returns:
        `None`
49
50
51
52
    """
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
Mengqing Cao's avatar
Mengqing Cao committed
53
54
55
56
57
    if is_torch_npu_available():
        torch.npu.manual_seed_all(seed)
    else:
        torch.cuda.manual_seed_all(seed)
        # ^^ safe to call this function even if cuda is not available
58
59


60
61
62
63
def compute_snr(noise_scheduler, timesteps):
    """
    Computes SNR as per
    https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
64
65
66
67
68
69
70
71
72
73
74
    for the given timesteps using the provided noise scheduler.

    Args:
        noise_scheduler (`NoiseScheduler`):
            An object containing the noise schedule parameters, specifically `alphas_cumprod`, which is used to compute
            the SNR values.
        timesteps (`torch.Tensor`):
            A tensor of timesteps for which the SNR is computed.

    Returns:
        `torch.Tensor`: A tensor containing the computed SNR values for each timestep.
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    """
    alphas_cumprod = noise_scheduler.alphas_cumprod
    sqrt_alphas_cumprod = alphas_cumprod**0.5
    sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5

    # Expand the tensors.
    # Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
    sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
    while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
        sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
    alpha = sqrt_alphas_cumprod.expand(timesteps.shape)

    sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
    while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
        sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
    sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)

    # Compute SNR.
    snr = (alpha / sigma) ** 2
    return snr


97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
def resolve_interpolation_mode(interpolation_type: str):
    """
    Maps a string describing an interpolation function to the corresponding torchvision `InterpolationMode` enum. The
    full list of supported enums is documented at
    https://pytorch.org/vision/0.9/transforms.html#torchvision.transforms.functional.InterpolationMode.

    Args:
        interpolation_type (`str`):
            A string describing an interpolation method. Currently, `bilinear`, `bicubic`, `box`, `nearest`,
            `nearest_exact`, `hamming`, and `lanczos` are supported, corresponding to the supported interpolation modes
            in torchvision.

    Returns:
        `torchvision.transforms.InterpolationMode`: an `InterpolationMode` enum used by torchvision's `resize`
        transform.
    """
113
114
115
116
117
    if not is_torchvision_available():
        raise ImportError(
            "Please make sure to install `torchvision` to be able to use the `resolve_interpolation_mode()` function."
        )

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    if interpolation_type == "bilinear":
        interpolation_mode = transforms.InterpolationMode.BILINEAR
    elif interpolation_type == "bicubic":
        interpolation_mode = transforms.InterpolationMode.BICUBIC
    elif interpolation_type == "box":
        interpolation_mode = transforms.InterpolationMode.BOX
    elif interpolation_type == "nearest":
        interpolation_mode = transforms.InterpolationMode.NEAREST
    elif interpolation_type == "nearest_exact":
        interpolation_mode = transforms.InterpolationMode.NEAREST_EXACT
    elif interpolation_type == "hamming":
        interpolation_mode = transforms.InterpolationMode.HAMMING
    elif interpolation_type == "lanczos":
        interpolation_mode = transforms.InterpolationMode.LANCZOS
    else:
        raise ValueError(
            f"The given interpolation mode {interpolation_type} is not supported. Currently supported interpolation"
            f" modes are `bilinear`, `bicubic`, `box`, `nearest`, `nearest_exact`, `hamming`, and `lanczos`."
        )

    return interpolation_mode


141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
def compute_dream_and_update_latents(
    unet: UNet2DConditionModel,
    noise_scheduler: SchedulerMixin,
    timesteps: torch.Tensor,
    noise: torch.Tensor,
    noisy_latents: torch.Tensor,
    target: torch.Tensor,
    encoder_hidden_states: torch.Tensor,
    dream_detail_preservation: float = 1.0,
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor]]:
    """
    Implements "DREAM (Diffusion Rectification and Estimation-Adaptive Models)" from http://arxiv.org/abs/2312.00210.
    DREAM helps align training with sampling to help training be more efficient and accurate at the cost of an extra
    forward step without gradients.

    Args:
        `unet`: The state unet to use to make a prediction.
        `noise_scheduler`: The noise scheduler used to add noise for the given timestep.
        `timesteps`: The timesteps for the noise_scheduler to user.
        `noise`: A tensor of noise in the shape of noisy_latents.
        `noisy_latents`: Previously noise latents from the training loop.
        `target`: The ground-truth tensor to predict after eps is removed.
        `encoder_hidden_states`: Text embeddings from the text model.
        `dream_detail_preservation`: A float value that indicates detail preservation level.
          See reference.

    Returns:
        `tuple[torch.Tensor, torch.Tensor]`: Adjusted noisy_latents and target.
    """
    alphas_cumprod = noise_scheduler.alphas_cumprod.to(timesteps.device)[timesteps, None, None, None]
    sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5

    # The paper uses lambda = sqrt(1 - alpha) ** p, with p = 1 in their experiments.
    dream_lambda = sqrt_one_minus_alphas_cumprod**dream_detail_preservation

    pred = None
    with torch.no_grad():
        pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample

180
    _noisy_latents, _target = (None, None)
181
182
183
184
    if noise_scheduler.config.prediction_type == "epsilon":
        predicted_noise = pred
        delta_noise = (noise - predicted_noise).detach()
        delta_noise.mul_(dream_lambda)
185
186
        _noisy_latents = noisy_latents.add(sqrt_one_minus_alphas_cumprod * delta_noise)
        _target = target.add(delta_noise)
187
188
189
190
191
    elif noise_scheduler.config.prediction_type == "v_prediction":
        raise NotImplementedError("DREAM has not been implemented for v-prediction")
    else:
        raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

192
    return _noisy_latents, _target
193
194


195
196
197
198
199
200
201
202
203
204
205
206
207
208
def unet_lora_state_dict(unet: UNet2DConditionModel) -> Dict[str, torch.Tensor]:
    r"""
    Returns:
        A state dict containing just the LoRA parameters.
    """
    lora_state_dict = {}

    for name, module in unet.named_modules():
        if hasattr(module, "set_lora_layer"):
            lora_layer = getattr(module, "lora_layer")
            if lora_layer is not None:
                current_lora_layer_sd = lora_layer.state_dict()
                for lora_layer_matrix_name, lora_param in current_lora_layer_sd.items():
                    # The matrix name can either be "down" or "up".
209
                    lora_state_dict[f"{name}.lora.{lora_layer_matrix_name}"] = lora_param
210
211
212
213

    return lora_state_dict


214
def cast_training_params(model: Union[torch.nn.Module, List[torch.nn.Module]], dtype=torch.float32):
215
216
217
218
219
220
221
    """
    Casts the training parameters of the model to the specified data type.

    Args:
        model: The PyTorch model whose parameters will be cast.
        dtype: The data type to which the model parameters will be cast.
    """
222
223
224
225
226
227
228
229
230
    if not isinstance(model, list):
        model = [model]
    for m in model:
        for param in m.parameters():
            # only upcast trainable parameters into fp32
            if param.requires_grad:
                param.data = param.to(dtype)


231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
def _set_state_dict_into_text_encoder(
    lora_state_dict: Dict[str, torch.Tensor], prefix: str, text_encoder: torch.nn.Module
):
    """
    Sets the `lora_state_dict` into `text_encoder` coming from `transformers`.

    Args:
        lora_state_dict: The state dictionary to be set.
        prefix: String identifier to retrieve the portion of the state dict that belongs to `text_encoder`.
        text_encoder: Where the `lora_state_dict` is to be set.
    """

    text_encoder_state_dict = {
        f'{k.replace(prefix, "")}': v for k, v in lora_state_dict.items() if k.startswith(prefix)
    }
    text_encoder_state_dict = convert_state_dict_to_peft(convert_state_dict_to_diffusers(text_encoder_state_dict))
    set_peft_model_state_dict(text_encoder, text_encoder_state_dict, adapter_name="default")


250
251
252
def compute_density_for_timestep_sampling(
    weighting_scheme: str, batch_size: int, logit_mean: float = None, logit_std: float = None, mode_scale: float = None
):
253
254
    """
    Compute the density for sampling the timesteps when doing SD3 training.
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

    Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.

    SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
    """
    if weighting_scheme == "logit_normal":
        # See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
        u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu")
        u = torch.nn.functional.sigmoid(u)
    elif weighting_scheme == "mode":
        u = torch.rand(size=(batch_size,), device="cpu")
        u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
    else:
        u = torch.rand(size=(batch_size,), device="cpu")
    return u


def compute_loss_weighting_for_sd3(weighting_scheme: str, sigmas=None):
273
274
    """
    Computes loss weighting scheme for SD3 training.
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

    Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.

    SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
    """
    if weighting_scheme == "sigma_sqrt":
        weighting = (sigmas**-2.0).float()
    elif weighting_scheme == "cosmap":
        bot = 1 - 2 * sigmas + 2 * sigmas**2
        weighting = 2 / (math.pi * bot)
    else:
        weighting = torch.ones_like(sigmas)
    return weighting


290
def free_memory():
291
292
293
    """
    Runs garbage collection. Then clears the cache of the available accelerator.
    """
294
295
296
297
298
299
300
    gc.collect()

    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    elif torch.backends.mps.is_available():
        torch.mps.empty_cache()
    elif is_torch_npu_available():
301
        torch_npu.npu.empty_cache()
302
303


304
# Adapted from torch-ema https://github.com/fadel/pytorch_ema/blob/master/torch_ema/ema.py#L14
anton-l's avatar
anton-l committed
305
306
307
308
309
310
311
class EMAModel:
    """
    Exponential Moving Average of models weights
    """

    def __init__(
        self,
312
313
314
315
316
317
318
        parameters: Iterable[torch.nn.Parameter],
        decay: float = 0.9999,
        min_decay: float = 0.0,
        update_after_step: int = 0,
        use_ema_warmup: bool = False,
        inv_gamma: Union[float, int] = 1.0,
        power: Union[float, int] = 2 / 3,
319
        foreach: bool = False,
320
321
        model_cls: Optional[Any] = None,
        model_config: Dict[str, Any] = None,
322
        **kwargs,
anton-l's avatar
anton-l committed
323
324
    ):
        """
325
326
327
328
329
330
331
332
333
        Args:
            parameters (Iterable[torch.nn.Parameter]): The parameters to track.
            decay (float): The decay factor for the exponential moving average.
            min_decay (float): The minimum decay factor for the exponential moving average.
            update_after_step (int): The number of steps to wait before starting to update the EMA weights.
            use_ema_warmup (bool): Whether to use EMA warmup.
            inv_gamma (float):
                Inverse multiplicative factor of EMA warmup. Default: 1. Only used if `use_ema_warmup` is True.
            power (float): Exponential factor of EMA warmup. Default: 2/3. Only used if `use_ema_warmup` is True.
334
            foreach (bool): Use torch._foreach functions for updating shadow parameters. Should be faster.
335
336
337
            device (Optional[Union[str, torch.device]]): The device to store the EMA weights on. If None, the EMA
                        weights will be stored on CPU.

anton-l's avatar
anton-l committed
338
        @crowsonkb's notes on EMA Warmup:
Patrick von Platen's avatar
Patrick von Platen committed
339
340
341
342
            If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are good values for models you plan
            to train for a million or more steps (reaches decay factor 0.999 at 31.6K steps, 0.9999 at 1M steps),
            gamma=1, power=3/4 for models you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999
            at 215.4k steps).
anton-l's avatar
anton-l committed
343
344
        """

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
        if isinstance(parameters, torch.nn.Module):
            deprecation_message = (
                "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. "
                "Please pass the parameters of the module instead."
            )
            deprecate(
                "passing a `torch.nn.Module` to `ExponentialMovingAverage`",
                "1.0.0",
                deprecation_message,
                standard_warn=False,
            )
            parameters = parameters.parameters()

            # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility
            use_ema_warmup = True

        if kwargs.get("max_value", None) is not None:
            deprecation_message = "The `max_value` argument is deprecated. Please use `decay` instead."
            deprecate("max_value", "1.0.0", deprecation_message, standard_warn=False)
            decay = kwargs["max_value"]

        if kwargs.get("min_value", None) is not None:
            deprecation_message = "The `min_value` argument is deprecated. Please use `min_decay` instead."
            deprecate("min_value", "1.0.0", deprecation_message, standard_warn=False)
            min_decay = kwargs["min_value"]

        parameters = list(parameters)
        self.shadow_params = [p.clone().detach() for p in parameters]

        if kwargs.get("device", None) is not None:
            deprecation_message = "The `device` argument is deprecated. Please use `to` instead."
            deprecate("device", "1.0.0", deprecation_message, standard_warn=False)
            self.to(device=kwargs["device"])

379
        self.temp_stored_params = None
anton-l's avatar
anton-l committed
380

381
382
        self.decay = decay
        self.min_decay = min_decay
anton-l's avatar
anton-l committed
383
        self.update_after_step = update_after_step
384
        self.use_ema_warmup = use_ema_warmup
anton-l's avatar
anton-l committed
385
386
        self.inv_gamma = inv_gamma
        self.power = power
387
        self.optimization_step = 0
388
        self.cur_decay_value = None  # set in `step()`
389
        self.foreach = foreach
anton-l's avatar
anton-l committed
390

391
392
393
394
        self.model_cls = model_cls
        self.model_config = model_config

    @classmethod
395
    def from_pretrained(cls, path, model_cls, foreach=False) -> "EMAModel":
396
        _, ema_kwargs = model_cls.from_config(path, return_unused_kwargs=True)
397
398
        model = model_cls.from_pretrained(path)

399
        ema_model = cls(model.parameters(), model_cls=model_cls, model_config=model.config, foreach=foreach)
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

        ema_model.load_state_dict(ema_kwargs)
        return ema_model

    def save_pretrained(self, path):
        if self.model_cls is None:
            raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__.")

        if self.model_config is None:
            raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__.")

        model = self.model_cls.from_config(self.model_config)
        state_dict = self.state_dict()
        state_dict.pop("shadow_params", None)

        model.register_to_config(**state_dict)
        self.copy_to(model.parameters())
        model.save_pretrained(path)

419
    def get_decay(self, optimization_step: int) -> float:
anton-l's avatar
anton-l committed
420
421
422
423
424
425
426
427
        """
        Compute the decay factor for the exponential moving average.
        """
        step = max(0, optimization_step - self.update_after_step - 1)

        if step <= 0:
            return 0.0

428
429
430
431
432
433
434
435
436
        if self.use_ema_warmup:
            cur_decay_value = 1 - (1 + step / self.inv_gamma) ** -self.power
        else:
            cur_decay_value = (1 + step) / (10 + step)

        cur_decay_value = min(cur_decay_value, self.decay)
        # make sure decay is not smaller than min_decay
        cur_decay_value = max(cur_decay_value, self.min_decay)
        return cur_decay_value
anton-l's avatar
anton-l committed
437
438

    @torch.no_grad()
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
    def step(self, parameters: Iterable[torch.nn.Parameter]):
        if isinstance(parameters, torch.nn.Module):
            deprecation_message = (
                "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. "
                "Please pass the parameters of the module instead."
            )
            deprecate(
                "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`",
                "1.0.0",
                deprecation_message,
                standard_warn=False,
            )
            parameters = parameters.parameters()

        parameters = list(parameters)

        self.optimization_step += 1

        # Compute the decay factor for the exponential moving average.
        decay = self.get_decay(self.optimization_step)
459
        self.cur_decay_value = decay
460
461
        one_minus_decay = 1 - decay

462
        context_manager = contextlib.nullcontext()
463

464
        if self.foreach:
465
            if is_transformers_available() and transformers.integrations.deepspeed.is_deepspeed_zero3_enabled():
466
                context_manager = deepspeed.zero.GatheredParameters(parameters, modifier_rank=None)
467

468
            with context_manager:
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
                params_grad = [param for param in parameters if param.requires_grad]
                s_params_grad = [
                    s_param for s_param, param in zip(self.shadow_params, parameters) if param.requires_grad
                ]

                if len(params_grad) < len(parameters):
                    torch._foreach_copy_(
                        [s_param for s_param, param in zip(self.shadow_params, parameters) if not param.requires_grad],
                        [param for param in parameters if not param.requires_grad],
                        non_blocking=True,
                    )

                torch._foreach_sub_(
                    s_params_grad, torch._foreach_sub(s_params_grad, params_grad), alpha=one_minus_decay
                )

        else:
            for s_param, param in zip(self.shadow_params, parameters):
487
                if is_transformers_available() and transformers.integrations.deepspeed.is_deepspeed_zero3_enabled():
488
489
                    context_manager = deepspeed.zero.GatheredParameters(param, modifier_rank=None)

490
                with context_manager:
491
492
493
494
                    if param.requires_grad:
                        s_param.sub_(one_minus_decay * (s_param - param))
                    else:
                        s_param.copy_(param)
anton-l's avatar
anton-l committed
495

496
497
498
    def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None:
        """
        Copy current averaged parameters into given collection of parameters.
anton-l's avatar
anton-l committed
499

500
501
502
503
504
505
        Args:
            parameters: Iterable of `torch.nn.Parameter`; the parameters to be
                updated with the stored moving averages. If `None`, the parameters with which this
                `ExponentialMovingAverage` was initialized will be used.
        """
        parameters = list(parameters)
506
507
508
509
510
511
512
513
        if self.foreach:
            torch._foreach_copy_(
                [param.data for param in parameters],
                [s_param.to(param.device).data for s_param, param in zip(self.shadow_params, parameters)],
            )
        else:
            for s_param, param in zip(self.shadow_params, parameters):
                param.data.copy_(s_param.to(param.device).data)
514

515
516
517
518
519
520
521
522
523
    def pin_memory(self) -> None:
        r"""
        Move internal buffers of the ExponentialMovingAverage to pinned memory. Useful for non-blocking transfers for
        offloading EMA params to the host.
        """

        self.shadow_params = [p.pin_memory() for p in self.shadow_params]

    def to(self, device=None, dtype=None, non_blocking=False) -> None:
524
525
        r"""
        Move internal buffers of the ExponentialMovingAverage to `device`.
526
527
528
529
530
531

        Args:
            device: like `device` argument to `torch.Tensor.to`
        """
        # .to() on the tensors handles None correctly
        self.shadow_params = [
532
533
534
            p.to(device=device, dtype=dtype, non_blocking=non_blocking)
            if p.is_floating_point()
            else p.to(device=device, non_blocking=non_blocking)
535
536
537
538
539
540
541
542
543
544
545
546
547
            for p in self.shadow_params
        ]

    def state_dict(self) -> dict:
        r"""
        Returns the state of the ExponentialMovingAverage as a dict. This method is used by accelerate during
        checkpointing to save the ema state dict.
        """
        # Following PyTorch conventions, references to tensors are returned:
        # "returns a reference to the state and not its copy!" -
        # https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict
        return {
            "decay": self.decay,
548
            "min_decay": self.min_decay,
549
550
551
552
553
554
555
556
            "optimization_step": self.optimization_step,
            "update_after_step": self.update_after_step,
            "use_ema_warmup": self.use_ema_warmup,
            "inv_gamma": self.inv_gamma,
            "power": self.power,
            "shadow_params": self.shadow_params,
        }

557
558
    def store(self, parameters: Iterable[torch.nn.Parameter]) -> None:
        r"""
559
560
        Saves the current parameters for restoring later.

561
        Args:
562
            parameters: Iterable of `torch.nn.Parameter`. The parameters to be temporarily stored.
563
564
565
566
567
        """
        self.temp_stored_params = [param.detach().cpu().clone() for param in parameters]

    def restore(self, parameters: Iterable[torch.nn.Parameter]) -> None:
        r"""
568
569
        Restore the parameters stored with the `store` method. Useful to validate the model with EMA parameters
        without: affecting the original optimization process. Store the parameters before the `copy_to()` method. After
570
        validation (or model saving), use this to restore the former parameters.
571
572

        Args:
573
574
575
576
            parameters: Iterable of `torch.nn.Parameter`; the parameters to be
                updated with the stored parameters. If `None`, the parameters with which this
                `ExponentialMovingAverage` was initialized will be used.
        """
577

578
579
        if self.temp_stored_params is None:
            raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`")
580
581
582
583
584
585
586
        if self.foreach:
            torch._foreach_copy_(
                [param.data for param in parameters], [c_param.data for c_param in self.temp_stored_params]
            )
        else:
            for c_param, param in zip(self.temp_stored_params, parameters):
                param.data.copy_(c_param.data)
587
588
589
590

        # Better memory-wise.
        self.temp_stored_params = None

591
592
593
594
    def load_state_dict(self, state_dict: dict) -> None:
        r"""
        Loads the ExponentialMovingAverage state. This method is used by accelerate during checkpointing to save the
        ema state dict.
595
596

        Args:
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
            state_dict (dict): EMA state. Should be an object returned
                from a call to :meth:`state_dict`.
        """
        # deepcopy, to be consistent with module API
        state_dict = copy.deepcopy(state_dict)

        self.decay = state_dict.get("decay", self.decay)
        if self.decay < 0.0 or self.decay > 1.0:
            raise ValueError("Decay must be between 0 and 1")

        self.min_decay = state_dict.get("min_decay", self.min_decay)
        if not isinstance(self.min_decay, float):
            raise ValueError("Invalid min_decay")

        self.optimization_step = state_dict.get("optimization_step", self.optimization_step)
        if not isinstance(self.optimization_step, int):
            raise ValueError("Invalid optimization_step")

        self.update_after_step = state_dict.get("update_after_step", self.update_after_step)
        if not isinstance(self.update_after_step, int):
            raise ValueError("Invalid update_after_step")

        self.use_ema_warmup = state_dict.get("use_ema_warmup", self.use_ema_warmup)
        if not isinstance(self.use_ema_warmup, bool):
            raise ValueError("Invalid use_ema_warmup")

        self.inv_gamma = state_dict.get("inv_gamma", self.inv_gamma)
        if not isinstance(self.inv_gamma, (float, int)):
            raise ValueError("Invalid inv_gamma")

627
        self.power = state_dict.get("power", self.power)
628
629
630
        if not isinstance(self.power, (float, int)):
            raise ValueError("Invalid power")

631
632
633
634
635
636
637
        shadow_params = state_dict.get("shadow_params", None)
        if shadow_params is not None:
            self.shadow_params = shadow_params
            if not isinstance(self.shadow_params, list):
                raise ValueError("shadow_params must be a list")
            if not all(isinstance(p, torch.Tensor) for p in self.shadow_params):
                raise ValueError("shadow_params must all be Tensors")