pipeline_controlnet_inpaint.py 74.8 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/

import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
24
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
25

Álvaro Somoza's avatar
Álvaro Somoza committed
26
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
27
from ...image_processor import PipelineImageInput, VaeImageProcessor
28
from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
29
from ...models import AutoencoderKL, ControlNetModel, ImageProjection, MultiControlNetModel, UNet2DConditionModel
30
from ...models.lora import adjust_lora_scale_text_encoder
31
from ...schedulers import KarrasDiffusionSchedulers
32
33
34
from ...utils import (
    USE_PEFT_BACKEND,
    deprecate,
hlky's avatar
hlky committed
35
    is_torch_xla_available,
36
37
38
39
40
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
Dhruv Nair's avatar
Dhruv Nair committed
41
from ...utils.torch_utils import is_compiled_module, randn_tensor
42
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
43
44
45
46
from ..stable_diffusion import StableDiffusionPipelineOutput
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker


hlky's avatar
hlky committed
47
48
49
50
51
52
53
if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False

54
55
56
57
58
59
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


EXAMPLE_DOC_STRING = """
    Examples:
        ```py
60
61
        >>> # !pip install transformers accelerate
        >>> from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel, DDIMScheduler
62
63
64
65
        >>> from diffusers.utils import load_image
        >>> import numpy as np
        >>> import torch

66
67
68
69
70
71
72
73
74
75
76
77
        >>> init_image = load_image(
        ...     "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy.png"
        ... )
        >>> init_image = init_image.resize((512, 512))

        >>> generator = torch.Generator(device="cpu").manual_seed(1)

        >>> mask_image = load_image(
        ...     "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy_mask.png"
        ... )
        >>> mask_image = mask_image.resize((512, 512))

78

79
80
81
82
83
84
        >>> def make_canny_condition(image):
        ...     image = np.array(image)
        ...     image = cv2.Canny(image, 100, 200)
        ...     image = image[:, :, None]
        ...     image = np.concatenate([image, image, image], axis=2)
        ...     image = Image.fromarray(image)
85
        ...     return image
86
87


88
        >>> control_image = make_canny_condition(init_image)
89

90
91
92
        >>> controlnet = ControlNetModel.from_pretrained(
        ...     "lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16
        ... )
93
        >>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
94
        ...     "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
95
96
        ... )

97
        >>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
98
99
100
101
        >>> pipe.enable_model_cpu_offload()

        >>> # generate image
        >>> image = pipe(
102
        ...     "a handsome man with ray-ban sunglasses",
103
        ...     num_inference_steps=20,
104
        ...     generator=generator,
105
        ...     eta=1.0,
106
107
        ...     image=init_image,
        ...     mask_image=mask_image,
108
        ...     control_image=control_image,
109
110
111
112
113
        ... ).images[0]
        ```
"""


114
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
115
116
117
118
def retrieve_latents(
    encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
119
        return encoder_output.latent_dist.sample(generator)
120
121
    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
        return encoder_output.latent_dist.mode()
122
123
124
125
126
127
    elif hasattr(encoder_output, "latents"):
        return encoder_output.latents
    else:
        raise AttributeError("Could not access latents of provided encoder_output")


128
class StableDiffusionControlNetInpaintPipeline(
129
130
131
    DiffusionPipeline,
    StableDiffusionMixin,
    TextualInversionLoaderMixin,
132
    StableDiffusionLoraLoaderMixin,
133
134
    IPAdapterMixin,
    FromSingleFileMixin,
135
):
136
    r"""
Steven Liu's avatar
Steven Liu committed
137
    Pipeline for image inpainting using Stable Diffusion with ControlNet guidance.
138

Steven Liu's avatar
Steven Liu committed
139
140
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).
141

Steven Liu's avatar
Steven Liu committed
142
143
    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
144
145
        - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
146
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
147
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
148

149
150
    <Tip>

Steven Liu's avatar
Steven Liu committed
151
    This pipeline can be used with checkpoints that have been specifically fine-tuned for inpainting
Aryan's avatar
Aryan committed
152
153
154
155
156
    ([stable-diffusion-v1-5/stable-diffusion-inpainting](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting))
    as well as default text-to-image Stable Diffusion checkpoints
    ([stable-diffusion-v1-5/stable-diffusion-v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5)).
    Default text-to-image Stable Diffusion checkpoints might be preferable for ControlNets that have been fine-tuned on
    those, such as [lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint).
157
158
159

    </Tip>

160
161
    Args:
        vae ([`AutoencoderKL`]):
Steven Liu's avatar
Steven Liu committed
162
163
164
165
166
167
168
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
169
        controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
Steven Liu's avatar
Steven Liu committed
170
171
172
            Provides additional conditioning to the `unet` during the denoising process. If you set multiple
            ControlNets as a list, the outputs from each ControlNet are added together to create one combined
            additional conditioning.
173
174
175
176
177
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
Aryan's avatar
Aryan committed
178
179
            Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for
            more details about a model's potential harms.
Steven Liu's avatar
Steven Liu committed
180
181
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
182
    """
183

184
    model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
185
    _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
186
    _exclude_from_cpu_offload = ["safety_checker"]
187
188
189
190
191
192
193
194
    _callback_tensor_inputs = [
        "latents",
        "prompt_embeds",
        "negative_prompt_embeds",
        "control_image",
        "mask",
        "masked_image_latents",
    ]
195
196
197
198
199
200
201
202
203
204
205

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
206
        image_encoder: CLIPVisionModelWithProjection = None,
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
        requires_safety_checker: bool = True,
    ):
        super().__init__()

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        if isinstance(controlnet, (list, tuple)):
            controlnet = MultiControlNetModel(controlnet)

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            controlnet=controlnet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
239
            image_encoder=image_encoder,
240
        )
hlky's avatar
hlky committed
241
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
242
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
243
244
245
        self.mask_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
        )
246
247
248
        self.control_image_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
        )
249
250
251
252
253
254
255
256
257
258
        self.register_to_config(requires_safety_checker=requires_safety_checker)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
259
260
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
261
        lora_scale: Optional[float] = None,
262
        **kwargs,
263
264
265
266
267
268
269
270
271
272
273
274
275
    ):
        deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
        deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)

        prompt_embeds_tuple = self.encode_prompt(
            prompt=prompt,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
276
            **kwargs,
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        )

        # concatenate for backwards comp
        prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])

        return prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
    def encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
292
293
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
294
        lora_scale: Optional[float] = None,
295
        clip_skip: Optional[int] = None,
296
297
298
299
300
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
301
            prompt (`str` or `List[str]`, *optional*):
302
303
304
305
306
307
308
309
310
311
312
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
313
            prompt_embeds (`torch.Tensor`, *optional*):
314
315
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
316
            negative_prompt_embeds (`torch.Tensor`, *optional*):
317
318
319
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
320
            lora_scale (`float`, *optional*):
321
322
323
324
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
325
        """
326
327
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
328
        if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
329
330
            self._lora_scale = lora_scale

331
            # dynamically adjust the LoRA scale
332
            if not USE_PEFT_BACKEND:
333
334
335
                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
            else:
                scale_lora_layers(self.text_encoder, lora_scale)
336

337
338
339
340
341
342
343
344
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
co63oc's avatar
co63oc committed
345
            # textual inversion: process multi-vector tokens if necessary
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
            if clip_skip is None:
                prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
391

392
393
394
395
396
397
398
399
        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

co63oc's avatar
co63oc committed
427
            # textual inversion: process multi-vector tokens if necessary
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

455
            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
456
457
458
459

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

460
        if self.text_encoder is not None:
461
            if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
462
463
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)
464

465
        return prompt_embeds, negative_prompt_embeds
466

467
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
468
    def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
469
470
471
472
473
474
        dtype = next(self.image_encoder.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.feature_extractor(image, return_tensors="pt").pixel_values

        image = image.to(device=device, dtype=dtype)
475
476
477
478
479
480
481
482
483
484
485
486
487
488
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(
                torch.zeros_like(image), output_hidden_states=True
            ).hidden_states[-2]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image).image_embeds
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = torch.zeros_like(image_embeds)
489

490
            return image_embeds, uncond_image_embeds
491

492
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
493
    def prepare_ip_adapter_image_embeds(
494
        self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
495
    ):
YiYi Xu's avatar
YiYi Xu committed
496
497
498
        image_embeds = []
        if do_classifier_free_guidance:
            negative_image_embeds = []
499
500
501
        if ip_adapter_image_embeds is None:
            if not isinstance(ip_adapter_image, list):
                ip_adapter_image = [ip_adapter_image]
502

503
504
505
506
            if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
                raise ValueError(
                    f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
                )
507

508
509
510
511
512
513
514
            for single_ip_adapter_image, image_proj_layer in zip(
                ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
            ):
                output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
                single_image_embeds, single_negative_image_embeds = self.encode_image(
                    single_ip_adapter_image, device, 1, output_hidden_state
                )
515

YiYi Xu's avatar
YiYi Xu committed
516
                image_embeds.append(single_image_embeds[None, :])
517
                if do_classifier_free_guidance:
YiYi Xu's avatar
YiYi Xu committed
518
                    negative_image_embeds.append(single_negative_image_embeds[None, :])
519
        else:
520
521
522
            for single_image_embeds in ip_adapter_image_embeds:
                if do_classifier_free_guidance:
                    single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
YiYi Xu's avatar
YiYi Xu committed
523
                    negative_image_embeds.append(single_negative_image_embeds)
524
525
                image_embeds.append(single_image_embeds)

YiYi Xu's avatar
YiYi Xu committed
526
527
528
529
530
531
532
533
534
535
536
        ip_adapter_image_embeds = []
        for i, single_image_embeds in enumerate(image_embeds):
            single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
            if do_classifier_free_guidance:
                single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
                single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)

            single_image_embeds = single_image_embeds.to(device=device)
            ip_adapter_image_embeds.append(single_image_embeds)

        return ip_adapter_image_embeds
537

538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
    def run_safety_checker(self, image, device, dtype):
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if torch.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
            )
        return image, has_nsfw_concept

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
    def decode_latents(self, latents):
555
556
557
        deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
        deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)

558
559
560
561
562
563
564
565
566
567
568
        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents, return_dict=False)[0]
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
Quentin Gallouédec's avatar
Quentin Gallouédec committed
569
        # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
570
571
572
573
574
575
576
577
578
579
580
581
582
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

583
584
585
586
587
588
589
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
    def get_timesteps(self, num_inference_steps, strength, device):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
590
591
        if hasattr(self.scheduler, "set_begin_index"):
            self.scheduler.set_begin_index(t_start * self.scheduler.order)
592
593
594

        return timesteps, num_inference_steps - t_start

595
596
597
598
    def check_inputs(
        self,
        prompt,
        image,
599
        mask_image,
600
601
602
        height,
        width,
        callback_steps,
603
        output_type,
604
605
606
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
607
608
        ip_adapter_image=None,
        ip_adapter_image_embeds=None,
609
        controlnet_conditioning_scale=1.0,
610
611
        control_guidance_start=0.0,
        control_guidance_end=1.0,
612
        callback_on_step_end_tensor_inputs=None,
613
        padding_mask_crop=None,
614
    ):
615
        if height is not None and height % 8 != 0 or width is not None and width % 8 != 0:
616
617
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

618
        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
619
620
621
622
623
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

624
625
626
627
628
629
630
        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

657
658
659
        if padding_mask_crop is not None:
            if not isinstance(image, PIL.Image.Image):
                raise ValueError(
660
                    f"The image should be a PIL image when inpainting mask crop, but is of type {type(image)}."
661
662
663
664
665
666
667
                )
            if not isinstance(mask_image, PIL.Image.Image):
                raise ValueError(
                    f"The mask image should be a PIL image when inpainting mask crop, but is of type"
                    f" {type(mask_image)}."
                )
            if output_type != "pil":
668
                raise ValueError(f"The output type should be PIL when inpainting mask crop, but is {output_type}.")
669

670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
        # `prompt` needs more sophisticated handling when there are multiple
        # conditionings.
        if isinstance(self.controlnet, MultiControlNetModel):
            if isinstance(prompt, list):
                logger.warning(
                    f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
                    " prompts. The conditionings will be fixed across the prompts."
                )

        # Check `image`
        is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
            self.controlnet, torch._dynamo.eval_frame.OptimizedModule
        )
        if (
            isinstance(self.controlnet, ControlNetModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, ControlNetModel)
        ):
            self.check_image(image, prompt, prompt_embeds)
        elif (
            isinstance(self.controlnet, MultiControlNetModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
        ):
            if not isinstance(image, list):
                raise TypeError("For multiple controlnets: `image` must be type `list`")

            # When `image` is a nested list:
            # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
            elif any(isinstance(i, list) for i in image):
                raise ValueError("A single batch of multiple conditionings are supported at the moment.")
            elif len(image) != len(self.controlnet.nets):
                raise ValueError(
703
                    f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
                )

            for image_ in image:
                self.check_image(image_, prompt, prompt_embeds)
        else:
            assert False

        # Check `controlnet_conditioning_scale`
        if (
            isinstance(self.controlnet, ControlNetModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, ControlNetModel)
        ):
            if not isinstance(controlnet_conditioning_scale, float):
                raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
        elif (
            isinstance(self.controlnet, MultiControlNetModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
        ):
            if isinstance(controlnet_conditioning_scale, list):
                if any(isinstance(i, list) for i in controlnet_conditioning_scale):
                    raise ValueError("A single batch of multiple conditionings are supported at the moment.")
            elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
                self.controlnet.nets
            ):
                raise ValueError(
                    "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
                    " the same length as the number of controlnets"
                )
        else:
            assert False

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
        if len(control_guidance_start) != len(control_guidance_end):
            raise ValueError(
                f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
            )

        if isinstance(self.controlnet, MultiControlNetModel):
            if len(control_guidance_start) != len(self.controlnet.nets):
                raise ValueError(
                    f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
                )

        for start, end in zip(control_guidance_start, control_guidance_end):
            if start >= end:
                raise ValueError(
                    f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
                )
            if start < 0.0:
                raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
            if end > 1.0:
                raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")

758
759
760
761
762
        if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
            raise ValueError(
                "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
            )

763
764
765
766
767
        if ip_adapter_image_embeds is not None:
            if not isinstance(ip_adapter_image_embeds, list):
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
                )
768
            elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
769
                raise ValueError(
770
                    f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
771
772
                )

773
    # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
774
775
776
    def check_image(self, image, prompt, prompt_embeds):
        image_is_pil = isinstance(image, PIL.Image.Image)
        image_is_tensor = isinstance(image, torch.Tensor)
777
        image_is_np = isinstance(image, np.ndarray)
778
779
        image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
        image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
780
        image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
781

782
783
784
785
786
787
788
789
        if (
            not image_is_pil
            and not image_is_tensor
            and not image_is_np
            and not image_is_pil_list
            and not image_is_tensor_list
            and not image_is_np_list
        ):
790
            raise TypeError(
791
                f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
792
793
794
795
            )

        if image_is_pil:
            image_batch_size = 1
796
        else:
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
            image_batch_size = len(image)

        if prompt is not None and isinstance(prompt, str):
            prompt_batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            prompt_batch_size = len(prompt)
        elif prompt_embeds is not None:
            prompt_batch_size = prompt_embeds.shape[0]

        if image_batch_size != 1 and image_batch_size != prompt_batch_size:
            raise ValueError(
                f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
            )

    def prepare_control_image(
        self,
        image,
        width,
        height,
        batch_size,
        num_images_per_prompt,
        device,
        dtype,
820
821
        crops_coords,
        resize_mode,
822
823
824
        do_classifier_free_guidance=False,
        guess_mode=False,
    ):
825
826
827
        image = self.control_image_processor.preprocess(
            image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
        ).to(dtype=torch.float32)
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
        image_batch_size = image.shape[0]

        if image_batch_size == 1:
            repeat_by = batch_size
        else:
            # image batch size is the same as prompt batch size
            repeat_by = num_images_per_prompt

        image = image.repeat_interleave(repeat_by, dim=0)

        image = image.to(device=device, dtype=dtype)

        if do_classifier_free_guidance and not guess_mode:
            image = torch.cat([image] * 2)

        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_latents
846
847
848
849
850
851
852
853
854
855
856
857
858
    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        device,
        generator,
        latents=None,
        image=None,
        timestep=None,
        is_strength_max=True,
859
860
        return_noise=False,
        return_image_latents=False,
861
    ):
862
863
864
865
866
867
        shape = (
            batch_size,
            num_channels_latents,
            int(height) // self.vae_scale_factor,
            int(width) // self.vae_scale_factor,
        )
868
869
870
871
872
873
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

874
875
876
877
878
879
        if (image is None or timestep is None) and not is_strength_max:
            raise ValueError(
                "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
                "However, either the image or the noise timestep has not been provided."
            )

880
881
        if return_image_latents or (latents is None and not is_strength_max):
            image = image.to(device=device, dtype=dtype)
882
883
884
885
886

            if image.shape[1] == 4:
                image_latents = image
            else:
                image_latents = self._encode_vae_image(image=image, generator=generator)
887
            image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
888

889
        if latents is None:
890
            noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
891
            # if strength is 1. then initialise the latents to noise, else initial to image + noise
892
            latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
893
894
            # if pure noise then scale the initial latents by the  Scheduler's init sigma
            latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
895
        else:
896
897
            noise = latents.to(device)
            latents = noise * self.scheduler.init_noise_sigma
898

899
900
901
902
903
904
905
906
907
        outputs = (latents,)

        if return_noise:
            outputs += (noise,)

        if return_image_latents:
            outputs += (image_latents,)

        return outputs
908
909
910
911
912
913
914
915
916
917
918
919
920
921

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_mask_latents
    def prepare_mask_latents(
        self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
    ):
        # resize the mask to latents shape as we concatenate the mask to the latents
        # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
        # and half precision
        mask = torch.nn.functional.interpolate(
            mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
        )
        mask = mask.to(device=device, dtype=dtype)

        masked_image = masked_image.to(device=device, dtype=dtype)
922
923
924
925
926

        if masked_image.shape[1] == 4:
            masked_image_latents = masked_image
        else:
            masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954

        # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
        if mask.shape[0] < batch_size:
            if not batch_size % mask.shape[0] == 0:
                raise ValueError(
                    "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
                    f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
                    " of masks that you pass is divisible by the total requested batch size."
                )
            mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
        if masked_image_latents.shape[0] < batch_size:
            if not batch_size % masked_image_latents.shape[0] == 0:
                raise ValueError(
                    "The passed images and the required batch size don't match. Images are supposed to be duplicated"
                    f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
                    " Make sure the number of images that you pass is divisible by the total requested batch size."
                )
            masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)

        mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
        masked_image_latents = (
            torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
        )

        # aligning device to prevent device errors when concating it with the latent model input
        masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
        return mask, masked_image_latents

955
956
957
958
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline._encode_vae_image
    def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
        if isinstance(generator, list):
            image_latents = [
959
                retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
960
961
962
963
                for i in range(image.shape[0])
            ]
            image_latents = torch.cat(image_latents, dim=0)
        else:
964
            image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
965
966
967
968
969

        image_latents = self.vae.config.scaling_factor * image_latents

        return image_latents

970
971
972
973
974
975
976
977
978
    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
Quentin Gallouédec's avatar
Quentin Gallouédec committed
979
    # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
980
981
982
983
984
985
986
987
988
989
990
991
992
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

993
994
995
996
    @property
    def interrupt(self):
        return self._interrupt

997
998
999
1000
1001
    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
1002
1003
1004
        image: PipelineImageInput = None,
        mask_image: PipelineImageInput = None,
        control_image: PipelineImageInput = None,
1005
1006
        height: Optional[int] = None,
        width: Optional[int] = None,
1007
        padding_mask_crop: Optional[int] = None,
1008
        strength: float = 1.0,
1009
1010
1011
1012
1013
1014
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
1015
1016
1017
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
1018
        ip_adapter_image: Optional[PipelineImageInput] = None,
1019
        ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
1020
1021
1022
1023
1024
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        controlnet_conditioning_scale: Union[float, List[float]] = 0.5,
        guess_mode: bool = False,
1025
1026
        control_guidance_start: Union[float, List[float]] = 0.0,
        control_guidance_end: Union[float, List[float]] = 1.0,
1027
        clip_skip: Optional[int] = None,
Álvaro Somoza's avatar
Álvaro Somoza committed
1028
1029
1030
        callback_on_step_end: Optional[
            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
        ] = None,
1031
1032
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
1033
1034
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
1035
        The call function to the pipeline for generation.
1036
1037
1038

        Args:
            prompt (`str` or `List[str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1039
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
1040
            image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`,
1041
                    `List[PIL.Image.Image]`, or `List[np.ndarray]`):
Steven Liu's avatar
Steven Liu committed
1042
1043
1044
1045
1046
                `Image`, NumPy array or tensor representing an image batch to be used as the starting point. For both
                NumPy array and PyTorch tensor, the expected value range is between `[0, 1]`. If it's a tensor or a
                list or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a NumPy array or
                a list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)`. It can also accept image
                latents as `image`, but if passing latents directly it is not encoded again.
1047
            mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`,
1048
                    `List[PIL.Image.Image]`, or `List[np.ndarray]`):
Steven Liu's avatar
Steven Liu committed
1049
                `Image`, NumPy array or tensor representing an image batch to mask `image`. White pixels in the mask
1050
                are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
Steven Liu's avatar
Steven Liu committed
1051
1052
1053
1054
                single channel (luminance) before use. If it's a NumPy array or PyTorch tensor, it should contain one
                color channel (L) instead of 3, so the expected shape for PyTorch tensor would be `(B, 1, H, W)`, `(B,
                H, W)`, `(1, H, W)`, `(H, W)`. And for NumPy array, it would be for `(B, H, W, 1)`, `(B, H, W)`, `(H,
                W, 1)`, or `(H, W)`.
1055
1056
            control_image (`torch.Tensor`, `PIL.Image.Image`, `List[torch.Tensor]`, `List[PIL.Image.Image]`,
                    `List[List[torch.Tensor]]`, or `List[List[PIL.Image.Image]]`):
Steven Liu's avatar
Steven Liu committed
1057
                The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
1058
1059
1060
1061
1062
                specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
                as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
                width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
                images must be passed as a list such that each element of the list can be correctly batched for input
                to a single ControlNet.
Steven Liu's avatar
Steven Liu committed
1063
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
1064
                The height in pixels of the generated image.
Steven Liu's avatar
Steven Liu committed
1065
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
1066
                The width in pixels of the generated image.
1067
            padding_mask_crop (`int`, *optional*, defaults to `None`):
1068
1069
1070
1071
1072
1073
                The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
                image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
                with the same aspect ration of the image and contains all masked area, and then expand that area based
                on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
                resizing to the original image size for inpainting. This is useful when the masked area is small while
                the image is large and contain information irrelevant for inpainting, such as background.
Steven Liu's avatar
Steven Liu committed
1074
1075
1076
1077
1078
1079
            strength (`float`, *optional*, defaults to 1.0):
                Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
                starting point and more noise is added the higher the `strength`. The number of denoising steps depends
                on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
                process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
                essentially ignores `image`.
1080
1081
1082
1083
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
Steven Liu's avatar
Steven Liu committed
1084
1085
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
1086
            negative_prompt (`str` or `List[str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1087
1088
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
1089
1090
1091
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
1092
1093
                Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only
                applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
1094
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1095
1096
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
1097
            latents (`torch.Tensor`, *optional*):
Steven Liu's avatar
Steven Liu committed
1098
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
1099
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
Steven Liu's avatar
Steven Liu committed
1100
                tensor is generated by sampling using the supplied random `generator`.
1101
            prompt_embeds (`torch.Tensor`, *optional*):
Steven Liu's avatar
Steven Liu committed
1102
1103
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
1104
            negative_prompt_embeds (`torch.Tensor`, *optional*):
Steven Liu's avatar
Steven Liu committed
1105
1106
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
1107
            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
1108
            ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
1109
1110
1111
1112
                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
                contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
                provided, embeddings are computed from the `ip_adapter_image` input argument.
1113
            output_type (`str`, *optional*, defaults to `"pil"`):
Steven Liu's avatar
Steven Liu committed
1114
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
1115
1116
1117
1118
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            cross_attention_kwargs (`dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
1119
1120
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1121
            controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 0.5):
Steven Liu's avatar
Steven Liu committed
1122
1123
1124
                The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
                to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
                the corresponding scale as a list.
1125
            guess_mode (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1126
1127
                The ControlNet encoder tries to recognize the content of the input image even if you remove all
                prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
1128
            control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
Steven Liu's avatar
Steven Liu committed
1129
                The percentage of total steps at which the ControlNet starts applying.
1130
            control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
Steven Liu's avatar
Steven Liu committed
1131
                The percentage of total steps at which the ControlNet stops applying.
1132
1133
1134
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
Álvaro Somoza's avatar
Álvaro Somoza committed
1135
1136
1137
1138
1139
            callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
                A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
                each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
                DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
                list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
1140
1141
1142
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1143
                `._callback_tensor_inputs` attribute of your pipeline class.
1144
1145
1146
1147
1148

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
Steven Liu's avatar
Steven Liu committed
1149
1150
1151
1152
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
1153
        """
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )

Álvaro Somoza's avatar
Álvaro Somoza committed
1171
1172
1173
        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

1174
1175
1176
1177
1178
1179
1180
1181
1182
        controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet

        # align format for control guidance
        if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
            control_guidance_start = len(control_guidance_end) * [control_guidance_start]
        elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
            control_guidance_end = len(control_guidance_start) * [control_guidance_end]
        elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
            mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
1183
1184
1185
1186
            control_guidance_start, control_guidance_end = (
                mult * [control_guidance_start],
                mult * [control_guidance_end],
            )
1187

1188
1189
1190
1191
        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            control_image,
1192
            mask_image,
1193
1194
1195
            height,
            width,
            callback_steps,
1196
            output_type,
1197
1198
1199
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
1200
1201
            ip_adapter_image,
            ip_adapter_image_embeds,
1202
            controlnet_conditioning_scale,
1203
1204
            control_guidance_start,
            control_guidance_end,
1205
            callback_on_step_end_tensor_inputs,
1206
            padding_mask_crop,
1207
1208
        )

1209
1210
1211
        self._guidance_scale = guidance_scale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs
1212
        self._interrupt = False
1213

1214
1215
1216
1217
1218
1219
1220
1221
        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

1222
1223
1224
1225
1226
1227
1228
1229
        if padding_mask_crop is not None:
            height, width = self.image_processor.get_default_height_width(image, height, width)
            crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
            resize_mode = "fill"
        else:
            crops_coords = None
            resize_mode = "default"

1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
        device = self._execution_device

        if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
            controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)

        global_pool_conditions = (
            controlnet.config.global_pool_conditions
            if isinstance(controlnet, ControlNetModel)
            else controlnet.nets[0].config.global_pool_conditions
        )
        guess_mode = guess_mode or global_pool_conditions

        # 3. Encode input prompt
1243
        text_encoder_lora_scale = (
1244
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1245
        )
1246
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
1247
1248
1249
            prompt,
            device,
            num_images_per_prompt,
1250
            self.do_classifier_free_guidance,
1251
1252
1253
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
1254
            lora_scale=text_encoder_lora_scale,
1255
            clip_skip=self.clip_skip,
1256
        )
1257
1258
1259
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
1260
        if self.do_classifier_free_guidance:
1261
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
1262

1263
        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1264
            image_embeds = self.prepare_ip_adapter_image_embeds(
1265
1266
1267
1268
1269
                ip_adapter_image,
                ip_adapter_image_embeds,
                device,
                batch_size * num_images_per_prompt,
                self.do_classifier_free_guidance,
1270
            )
1271

1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
        # 4. Prepare image
        if isinstance(controlnet, ControlNetModel):
            control_image = self.prepare_control_image(
                image=control_image,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                device=device,
                dtype=controlnet.dtype,
1282
1283
                crops_coords=crops_coords,
                resize_mode=resize_mode,
1284
                do_classifier_free_guidance=self.do_classifier_free_guidance,
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
                guess_mode=guess_mode,
            )
        elif isinstance(controlnet, MultiControlNetModel):
            control_images = []

            for control_image_ in control_image:
                control_image_ = self.prepare_control_image(
                    image=control_image_,
                    width=width,
                    height=height,
                    batch_size=batch_size * num_images_per_prompt,
                    num_images_per_prompt=num_images_per_prompt,
                    device=device,
                    dtype=controlnet.dtype,
1299
1300
                    crops_coords=crops_coords,
                    resize_mode=resize_mode,
1301
                    do_classifier_free_guidance=self.do_classifier_free_guidance,
1302
1303
1304
1305
1306
1307
1308
1309
1310
                    guess_mode=guess_mode,
                )

                control_images.append(control_image_)

            control_image = control_images
        else:
            assert False

1311
        # 4.1 Preprocess mask and image - resizes image and mask w.r.t height and width
1312
1313
1314
1315
        original_image = image
        init_image = self.image_processor.preprocess(
            image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
        )
1316
1317
        init_image = init_image.to(dtype=torch.float32)

1318
1319
1320
        mask = self.mask_processor.preprocess(
            mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
        )
1321
1322
1323

        masked_image = init_image * (mask < 0.5)
        _, _, height, width = init_image.shape
1324

1325
1326
        # 5. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
1327
1328
1329
1330
1331
1332
1333
        timesteps, num_inference_steps = self.get_timesteps(
            num_inference_steps=num_inference_steps, strength=strength, device=device
        )
        # at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
        # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
        is_strength_max = strength == 1.0
1334
        self._num_timesteps = len(timesteps)
1335
1336
1337

        # 6. Prepare latent variables
        num_channels_latents = self.vae.config.latent_channels
1338
1339
1340
        num_channels_unet = self.unet.config.in_channels
        return_image_latents = num_channels_unet == 4
        latents_outputs = self.prepare_latents(
1341
1342
1343
1344
1345
1346
1347
1348
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
1349
1350
1351
1352
1353
            image=init_image,
            timestep=latent_timestep,
            is_strength_max=is_strength_max,
            return_noise=True,
            return_image_latents=return_image_latents,
1354
1355
        )

1356
1357
1358
1359
1360
        if return_image_latents:
            latents, noise, image_latents = latents_outputs
        else:
            latents, noise = latents_outputs

1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
        # 7. Prepare mask latent variables
        mask, masked_image_latents = self.prepare_mask_latents(
            mask,
            masked_image,
            batch_size * num_images_per_prompt,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
1371
            self.do_classifier_free_guidance,
1372
1373
1374
1375
1376
        )

        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

1377
        # 7.1 Add image embeds for IP-Adapter
Aryan's avatar
Aryan committed
1378
1379
1380
1381
1382
        added_cond_kwargs = (
            {"image_embeds": image_embeds}
            if ip_adapter_image is not None or ip_adapter_image_embeds is not None
            else None
        )
1383
1384

        # 7.2 Create tensor stating which controlnets to keep
1385
        controlnet_keep = []
1386
        for i in range(len(timesteps)):
1387
            keeps = [
1388
                1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
1389
1390
                for s, e in zip(control_guidance_start, control_guidance_end)
            ]
1391
            controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
1392

1393
1394
1395
1396
        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
1397
1398
1399
                if self.interrupt:
                    continue

1400
                # expand the latents if we are doing classifier free guidance
1401
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1402
1403
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

1404
                # controlnet(s) inference
1405
                if guess_mode and self.do_classifier_free_guidance:
1406
                    # Infer ControlNet only for the conditional batch.
1407
1408
                    control_model_input = latents
                    control_model_input = self.scheduler.scale_model_input(control_model_input, t)
1409
1410
                    controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
                else:
1411
                    control_model_input = latent_model_input
1412
1413
                    controlnet_prompt_embeds = prompt_embeds

1414
1415
1416
                if isinstance(controlnet_keep[i], list):
                    cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
                else:
1417
1418
1419
1420
                    controlnet_cond_scale = controlnet_conditioning_scale
                    if isinstance(controlnet_cond_scale, list):
                        controlnet_cond_scale = controlnet_cond_scale[0]
                    cond_scale = controlnet_cond_scale * controlnet_keep[i]
1421

1422
                down_block_res_samples, mid_block_res_sample = self.controlnet(
1423
                    control_model_input,
1424
1425
1426
                    t,
                    encoder_hidden_states=controlnet_prompt_embeds,
                    controlnet_cond=control_image,
1427
                    conditioning_scale=cond_scale,
1428
1429
1430
1431
                    guess_mode=guess_mode,
                    return_dict=False,
                )

1432
                if guess_mode and self.do_classifier_free_guidance:
1433
                    # Inferred ControlNet only for the conditional batch.
1434
1435
1436
1437
1438
1439
                    # To apply the output of ControlNet to both the unconditional and conditional batches,
                    # add 0 to the unconditional batch to keep it unchanged.
                    down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
                    mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])

                # predict the noise residual
1440
1441
1442
                if num_channels_unet == 9:
                    latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)

1443
1444
1445
1446
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
1447
                    cross_attention_kwargs=self.cross_attention_kwargs,
1448
1449
                    down_block_additional_residuals=down_block_res_samples,
                    mid_block_additional_residual=mid_block_res_sample,
1450
                    added_cond_kwargs=added_cond_kwargs,
1451
1452
1453
1454
                    return_dict=False,
                )[0]

                # perform guidance
1455
                if self.do_classifier_free_guidance:
1456
1457
1458
1459
1460
1461
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

1462
                if num_channels_unet == 4:
1463
                    init_latents_proper = image_latents
1464
                    if self.do_classifier_free_guidance:
1465
1466
1467
                        init_mask, _ = mask.chunk(2)
                    else:
                        init_mask = mask
1468
1469

                    if i < len(timesteps) - 1:
1470
1471
1472
1473
                        noise_timestep = timesteps[i + 1]
                        init_latents_proper = self.scheduler.add_noise(
                            init_latents_proper, noise, torch.tensor([noise_timestep])
                        )
1474
1475
1476

                    latents = (1 - init_mask) * init_latents_proper + init_mask * latents

1477
1478
1479
1480
1481
1482
1483
1484
1485
                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1486
                    control_image = callback_outputs.pop("control_image", control_image)
1487

1488
1489
1490
1491
                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
1492
1493
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)
1494

hlky's avatar
hlky committed
1495
1496
1497
                if XLA_AVAILABLE:
                    xm.mark_step()

1498
1499
1500
1501
1502
1503
1504
1505
        # If we do sequential model offloading, let's offload unet and controlnet
        # manually for max memory savings
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.unet.to("cpu")
            self.controlnet.to("cpu")
            torch.cuda.empty_cache()

        if not output_type == "latent":
Will Berman's avatar
Will Berman committed
1506
1507
1508
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
                0
            ]
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

1521
1522
1523
        if padding_mask_crop is not None:
            image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]

1524
1525
        # Offload all models
        self.maybe_free_model_hooks()
1526
1527
1528
1529
1530

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)