test_hunyuan_dit.py 13.4 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
17
import tempfile
18
19
20
21
22
23
import unittest

import numpy as np
import torch
from transformers import AutoTokenizer, BertModel, T5EncoderModel

24
from diffusers import AutoencoderKL, DDPMScheduler, HunyuanDiT2DModel, HunyuanDiTPipeline
25
from diffusers.utils.testing_utils import (
26
    backend_empty_cache,
27
28
    enable_full_determinism,
    numpy_cosine_similarity_distance,
29
    require_torch_accelerator,
30
31
32
33
34
    slow,
    torch_device,
)

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
35
36
37
38
39
40
from ..test_pipelines_common import (
    PipelineTesterMixin,
    check_qkv_fusion_matches_attn_procs_length,
    check_qkv_fusion_processors_exist,
    to_np,
)
41
42
43
44
45
46
47
48
49
50
51
52
53


enable_full_determinism()


class HunyuanDiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = HunyuanDiTPipeline
    params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS

    required_optional_params = PipelineTesterMixin.required_optional_params
Aryan's avatar
Aryan committed
54
    test_layerwise_casting = True
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = HunyuanDiT2DModel(
            sample_size=16,
            num_layers=2,
            patch_size=2,
            attention_head_dim=8,
            num_attention_heads=3,
            in_channels=4,
            cross_attention_dim=32,
            cross_attention_dim_t5=32,
            pooled_projection_dim=16,
            hidden_size=24,
            activation_fn="gelu-approximate",
        )
        torch.manual_seed(0)
        vae = AutoencoderKL()

        scheduler = DDPMScheduler()
        text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel")
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
        text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
        tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        components = {
            "transformer": transformer.eval(),
            "vae": vae.eval(),
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "text_encoder_2": text_encoder_2,
            "tokenizer_2": tokenizer_2,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "output_type": "np",
            "use_resolution_binning": False,
        }
        return inputs

    def test_inference(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        self.assertEqual(image.shape, (1, 16, 16, 3))
        expected_slice = np.array(
            [0.56939435, 0.34541583, 0.35915792, 0.46489206, 0.38775963, 0.45004836, 0.5957267, 0.59481275, 0.33287364]
        )
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

127
    @unittest.skip("The HunyuanDiT Attention pooling layer does not support sequential CPU offloading.")
128
129
    def test_sequential_cpu_offload_forward_pass(self):
        # TODO(YiYi) need to fix later
130
131
132
133
        # This is because it instantiates it's attention layer from torch.nn.MultiheadAttention, which calls to
        # `torch.nn.functional.multi_head_attention_forward` with the weights and bias. Since the hook is never
        # triggered with a forward pass call, the weights stay on the CPU. There are more examples where we skip
        # this test because of MHA (example: HunyuanVideo Framepack)
134
135
        pass

136
    @unittest.skip("The HunyuanDiT Attention pooling layer does not support sequential CPU offloading.")
137
138
    def test_sequential_offload_forward_pass_twice(self):
        # TODO(YiYi) need to fix later
139
140
141
142
        # This is because it instantiates it's attention layer from torch.nn.MultiheadAttention, which calls to
        # `torch.nn.functional.multi_head_attention_forward` with the weights and bias. Since the hook is never
        # triggered with a forward pass call, the weights stay on the CPU. There are more examples where we skip
        # this test because of MHA (example: HunyuanVideo Framepack)
143
144
145
146
147
148
149
        pass

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(
            expected_max_diff=1e-3,
        )

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    def test_feed_forward_chunking(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice_no_chunking = image[0, -3:, -3:, -1]

        pipe.transformer.enable_forward_chunking(chunk_size=1, dim=0)
        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice_chunking = image[0, -3:, -3:, -1]

        max_diff = np.abs(to_np(image_slice_no_chunking) - to_np(image_slice_chunking)).max()
        self.assertLess(max_diff, 1e-4)

170
171
172
173
174
175
176
177
178
179
180
181
182
    def test_fused_qkv_projections(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["return_dict"] = False
        image = pipe(**inputs)[0]
        original_image_slice = image[0, -3:, -3:, -1]

        pipe.transformer.fuse_qkv_projections()
183
184
185
        # TODO (sayakpaul): will refactor this once `fuse_qkv_projections()` has been added
        # to the pipeline level.
        pipe.transformer.fuse_qkv_projections()
186
187
188
        assert check_qkv_fusion_processors_exist(pipe.transformer), (
            "Something wrong with the fused attention processors. Expected all the attention processors to be fused."
        )
189
190
191
192
        assert check_qkv_fusion_matches_attn_procs_length(
            pipe.transformer, pipe.transformer.original_attn_processors
        ), "Something wrong with the attention processors concerning the fused QKV projections."

193
194
195
196
197
198
199
200
201
202
203
        inputs = self.get_dummy_inputs(device)
        inputs["return_dict"] = False
        image_fused = pipe(**inputs)[0]
        image_slice_fused = image_fused[0, -3:, -3:, -1]

        pipe.transformer.unfuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        inputs["return_dict"] = False
        image_disabled = pipe(**inputs)[0]
        image_slice_disabled = image_disabled[0, -3:, -3:, -1]

204
205
206
207
208
209
210
211
212
        assert np.allclose(original_image_slice, image_slice_fused, atol=1e-2, rtol=1e-2), (
            "Fusion of QKV projections shouldn't affect the outputs."
        )
        assert np.allclose(image_slice_fused, image_slice_disabled, atol=1e-2, rtol=1e-2), (
            "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
        )
        assert np.allclose(original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2), (
            "Original outputs should match when fused QKV projections are disabled."
        )
213

214
215
216
217
218
219
    @unittest.skip(
        "Test not supported as `encode_prompt` is called two times separately which deivates from about 99% of the pipelines we have."
    )
    def test_encode_prompt_works_in_isolation(self):
        pass

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    def test_save_load_optional_components(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        prompt = inputs["prompt"]
        generator = inputs["generator"]
        num_inference_steps = inputs["num_inference_steps"]
        output_type = inputs["output_type"]

        (
            prompt_embeds,
            negative_prompt_embeds,
            prompt_attention_mask,
            negative_prompt_attention_mask,
        ) = pipe.encode_prompt(prompt, device=torch_device, dtype=torch.float32, text_encoder_index=0)

        (
            prompt_embeds_2,
            negative_prompt_embeds_2,
            prompt_attention_mask_2,
            negative_prompt_attention_mask_2,
        ) = pipe.encode_prompt(
            prompt,
            device=torch_device,
            dtype=torch.float32,
            text_encoder_index=1,
        )

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
            "prompt_attention_mask": prompt_attention_mask,
            "negative_prompt_embeds": negative_prompt_embeds,
            "negative_prompt_attention_mask": negative_prompt_attention_mask,
            "prompt_embeds_2": prompt_embeds_2,
            "prompt_attention_mask_2": prompt_attention_mask_2,
            "negative_prompt_embeds_2": negative_prompt_embeds_2,
            "negative_prompt_attention_mask_2": negative_prompt_attention_mask_2,
            "generator": generator,
            "num_inference_steps": num_inference_steps,
            "output_type": output_type,
            "use_resolution_binning": False,
        }

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(torch_device)

        generator = inputs["generator"]
        num_inference_steps = inputs["num_inference_steps"]
        output_type = inputs["output_type"]

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
            "prompt_attention_mask": prompt_attention_mask,
            "negative_prompt_embeds": negative_prompt_embeds,
            "negative_prompt_attention_mask": negative_prompt_attention_mask,
            "prompt_embeds_2": prompt_embeds_2,
            "prompt_attention_mask_2": prompt_attention_mask_2,
            "negative_prompt_embeds_2": negative_prompt_embeds_2,
            "negative_prompt_attention_mask_2": negative_prompt_attention_mask_2,
            "generator": generator,
            "num_inference_steps": num_inference_steps,
            "output_type": output_type,
            "use_resolution_binning": False,
        }

        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
        self.assertLess(max_diff, 1e-4)

313
314

@slow
315
@require_torch_accelerator
316
317
318
319
320
321
class HunyuanDiTPipelineIntegrationTests(unittest.TestCase):
    prompt = "一个宇航员在骑马"

    def setUp(self):
        super().setUp()
        gc.collect()
322
        backend_empty_cache(torch_device)
323
324
325
326

    def tearDown(self):
        super().tearDown()
        gc.collect()
327
        backend_empty_cache(torch_device)
328
329
330
331
332
333
334

    def test_hunyuan_dit_1024(self):
        generator = torch.Generator("cpu").manual_seed(0)

        pipe = HunyuanDiTPipeline.from_pretrained(
            "XCLiu/HunyuanDiT-0523", revision="refs/pr/2", torch_dtype=torch.float16
        )
335
        pipe.enable_model_cpu_offload(device=torch_device)
336
337
338
339
340
341
342
343
344
345
346
347
348
        prompt = self.prompt

        image = pipe(
            prompt=prompt, height=1024, width=1024, generator=generator, num_inference_steps=2, output_type="np"
        ).images

        image_slice = image[0, -3:, -3:, -1]
        expected_slice = np.array(
            [0.48388672, 0.33789062, 0.30737305, 0.47875977, 0.25097656, 0.30029297, 0.4440918, 0.26953125, 0.30078125]
        )

        max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice)
        assert max_diff < 1e-3, f"Max diff is too high. got {image_slice.flatten()}"