test_hunyuan_dit.py 8.87 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch
from transformers import AutoTokenizer, BertModel, T5EncoderModel

from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    HunyuanDiT2DModel,
    HunyuanDiTPipeline,
)
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    numpy_cosine_similarity_distance,
32
    require_torch_accelerator,
33
34
35
36
37
    slow,
    torch_device,
)

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
38
39
40
41
42
43
from ..test_pipelines_common import (
    PipelineTesterMixin,
    check_qkv_fusion_matches_attn_procs_length,
    check_qkv_fusion_processors_exist,
    to_np,
)
44
45
46
47
48
49
50
51
52
53
54
55
56


enable_full_determinism()


class HunyuanDiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = HunyuanDiTPipeline
    params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS

    required_optional_params = PipelineTesterMixin.required_optional_params
Aryan's avatar
Aryan committed
57
    test_layerwise_casting = True
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = HunyuanDiT2DModel(
            sample_size=16,
            num_layers=2,
            patch_size=2,
            attention_head_dim=8,
            num_attention_heads=3,
            in_channels=4,
            cross_attention_dim=32,
            cross_attention_dim_t5=32,
            pooled_projection_dim=16,
            hidden_size=24,
            activation_fn="gelu-approximate",
        )
        torch.manual_seed(0)
        vae = AutoencoderKL()

        scheduler = DDPMScheduler()
        text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel")
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
        text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
        tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        components = {
            "transformer": transformer.eval(),
            "vae": vae.eval(),
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "text_encoder_2": text_encoder_2,
            "tokenizer_2": tokenizer_2,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "output_type": "np",
            "use_resolution_binning": False,
        }
        return inputs

    def test_inference(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        self.assertEqual(image.shape, (1, 16, 16, 3))
        expected_slice = np.array(
            [0.56939435, 0.34541583, 0.35915792, 0.46489206, 0.38775963, 0.45004836, 0.5957267, 0.59481275, 0.33287364]
        )
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

130
    @unittest.skip("Not supported.")
131
132
133
134
    def test_sequential_cpu_offload_forward_pass(self):
        # TODO(YiYi) need to fix later
        pass

135
    @unittest.skip("Not supported.")
136
137
138
139
140
141
142
143
144
    def test_sequential_offload_forward_pass_twice(self):
        # TODO(YiYi) need to fix later
        pass

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(
            expected_max_diff=1e-3,
        )

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    def test_feed_forward_chunking(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice_no_chunking = image[0, -3:, -3:, -1]

        pipe.transformer.enable_forward_chunking(chunk_size=1, dim=0)
        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice_chunking = image[0, -3:, -3:, -1]

        max_diff = np.abs(to_np(image_slice_no_chunking) - to_np(image_slice_chunking)).max()
        self.assertLess(max_diff, 1e-4)

165
166
167
168
169
170
171
172
173
174
175
176
177
    def test_fused_qkv_projections(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["return_dict"] = False
        image = pipe(**inputs)[0]
        original_image_slice = image[0, -3:, -3:, -1]

        pipe.transformer.fuse_qkv_projections()
178
179
180
181
182
183
184
185
186
187
        # TODO (sayakpaul): will refactor this once `fuse_qkv_projections()` has been added
        # to the pipeline level.
        pipe.transformer.fuse_qkv_projections()
        assert check_qkv_fusion_processors_exist(
            pipe.transformer
        ), "Something wrong with the fused attention processors. Expected all the attention processors to be fused."
        assert check_qkv_fusion_matches_attn_procs_length(
            pipe.transformer, pipe.transformer.original_attn_processors
        ), "Something wrong with the attention processors concerning the fused QKV projections."

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
        inputs = self.get_dummy_inputs(device)
        inputs["return_dict"] = False
        image_fused = pipe(**inputs)[0]
        image_slice_fused = image_fused[0, -3:, -3:, -1]

        pipe.transformer.unfuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        inputs["return_dict"] = False
        image_disabled = pipe(**inputs)[0]
        image_slice_disabled = image_disabled[0, -3:, -3:, -1]

        assert np.allclose(
            original_image_slice, image_slice_fused, atol=1e-2, rtol=1e-2
        ), "Fusion of QKV projections shouldn't affect the outputs."
        assert np.allclose(
            image_slice_fused, image_slice_disabled, atol=1e-2, rtol=1e-2
        ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
        assert np.allclose(
            original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2
        ), "Original outputs should match when fused QKV projections are disabled."

209
210
211
212
213
214
    @unittest.skip(
        "Test not supported as `encode_prompt` is called two times separately which deivates from about 99% of the pipelines we have."
    )
    def test_encode_prompt_works_in_isolation(self):
        pass

215
216

@slow
217
@require_torch_accelerator
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
class HunyuanDiTPipelineIntegrationTests(unittest.TestCase):
    prompt = "一个宇航员在骑马"

    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_hunyuan_dit_1024(self):
        generator = torch.Generator("cpu").manual_seed(0)

        pipe = HunyuanDiTPipeline.from_pretrained(
            "XCLiu/HunyuanDiT-0523", revision="refs/pr/2", torch_dtype=torch.float16
        )
237
        pipe.enable_model_cpu_offload(device=torch_device)
238
239
240
241
242
243
244
245
246
247
248
249
250
        prompt = self.prompt

        image = pipe(
            prompt=prompt, height=1024, width=1024, generator=generator, num_inference_steps=2, output_type="np"
        ).images

        image_slice = image[0, -3:, -3:, -1]
        expected_slice = np.array(
            [0.48388672, 0.33789062, 0.30737305, 0.47875977, 0.25097656, 0.30029297, 0.4440918, 0.26953125, 0.30078125]
        )

        max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice)
        assert max_diff < 1e-3, f"Max diff is too high. got {image_slice.flatten()}"