README.md 5.17 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
## Textual Inversion fine-tuning example

[Textual inversion](https://arxiv.org/abs/2208.01618) is a method to personalize text2image models like stable diffusion on your own images using just 3-5 examples.
The `textual_inversion.py` script shows how to implement the training procedure and adapt it for stable diffusion.

6
7
8
9
10
11
12
13
## Running on Colab 

Colab for training 
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb)

Colab for inference
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb)

14
## Running locally with PyTorch
Suraj Patil's avatar
Suraj Patil committed
15
16
### Installing the dependencies

17
Before running the scripts, make sure to install the library's training dependencies:
Suraj Patil's avatar
Suraj Patil committed
18

19
20
21
22
23
24
25
26
27
**Important**

To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install .
```

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
28
Then cd in the example folder and run:
Suraj Patil's avatar
Suraj Patil committed
29
```bash
30
pip install -r requirements.txt
Suraj Patil's avatar
Suraj Patil committed
31
32
```

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
33
And initialize an [🤗 Accelerate](https://github.com/huggingface/accelerate/) environment with:
Suraj Patil's avatar
Suraj Patil committed
34
35
36
37
38
39
40

```bash
accelerate config
```

### Cat toy example

41
First, let's login so that we can upload the checkpoint to the Hub during training:
Suraj Patil's avatar
Suraj Patil committed
42
43
44
45
46

```bash
huggingface-cli login
```

47
Now let's get our dataset. For this example we will use some cat images: https://huggingface.co/datasets/diffusers/cat_toy_example .
Suraj Patil's avatar
Suraj Patil committed
48

49
Let's first download it locally:
Suraj Patil's avatar
Suraj Patil committed
50

51
52
53
54
55
56
```py
from huggingface_hub import snapshot_download

local_dir = "./cat"
snapshot_download("diffusers/cat_toy_example", local_dir=local_dir, repo_type="dataset", ignore_patterns=".gitattributes")
```
Suraj Patil's avatar
Suraj Patil committed
57

58
This will be our training data.
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
59
Now we can launch the training using:
Suraj Patil's avatar
Suraj Patil committed
60

61
62
**___Note: Change the `resolution` to 768 if you are using the [stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) 768x768 model.___**

Suraj Patil's avatar
Suraj Patil committed
63
```bash
apolinario's avatar
apolinario committed
64
export MODEL_NAME="runwayml/stable-diffusion-v1-5"
65
export DATA_DIR="./cat"
Suraj Patil's avatar
Suraj Patil committed
66
67

accelerate launch textual_inversion.py \
68
  --pretrained_model_name_or_path=$MODEL_NAME \
Suraj Patil's avatar
Suraj Patil committed
69
70
  --train_data_dir=$DATA_DIR \
  --learnable_property="object" \
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
71
72
  --placeholder_token="<cat-toy>" \
  --initializer_token="toy" \
Suraj Patil's avatar
Suraj Patil committed
73
74
  --resolution=512 \
  --train_batch_size=1 \
Suraj Patil's avatar
Suraj Patil committed
75
  --gradient_accumulation_steps=4 \
Suraj Patil's avatar
Suraj Patil committed
76
  --max_train_steps=3000 \
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
77
78
  --learning_rate=5.0e-04 \
  --scale_lr \
Suraj Patil's avatar
Suraj Patil committed
79
80
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
81
  --push_to_hub \
Suraj Patil's avatar
Suraj Patil committed
82
83
84
85
86
  --output_dir="textual_inversion_cat"
```

A full training run takes ~1 hour on one V100 GPU.

87
88
89
**Note**: As described in [the official paper](https://arxiv.org/abs/2208.01618) 
only one embedding vector is used for the placeholder token, *e.g.* `"<cat-toy>"`.
However, one can also add multiple embedding vectors for the placeholder token 
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
90
91
to increase the number of fine-tuneable parameters. This can help the model to learn 
more complex details. To use multiple embedding vectors, you should define `--num_vectors` 
92
to a number larger than one, *e.g.*:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
93
```bash
94
95
96
97
98
--num_vectors 5
```

The saved textual inversion vectors will then be larger in size compared to the default case.

Suraj Patil's avatar
Suraj Patil committed
99
100
101
102
103
104
### Inference

Once you have trained a model using above command, the inference can be done simply using the `StableDiffusionPipeline`. Make sure to include the `placeholder_token` in your prompt.

```python
from diffusers import StableDiffusionPipeline
105
import torch
Suraj Patil's avatar
Suraj Patil committed
106
107

model_id = "path-to-your-trained-model"
Kashif Rasul's avatar
Kashif Rasul committed
108
pipe = StableDiffusionPipeline.from_pretrained(model_id,torch_dtype=torch.float16).to("cuda")
Suraj Patil's avatar
Suraj Patil committed
109
110
111

prompt = "A <cat-toy> backpack"

112
image = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0]
Suraj Patil's avatar
Suraj Patil committed
113
114

image.save("cat-backpack.png")
Suraj Patil's avatar
Suraj Patil committed
115
```
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135


## Training with Flax/JAX

For faster training on TPUs and GPUs you can leverage the flax training example. Follow the instructions above to get the model and dataset before running the script.

Before running the scripts, make sure to install the library's training dependencies:

```bash
pip install -U -r requirements_flax.txt
```

```bash
export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
export DATA_DIR="path-to-dir-containing-images"

python textual_inversion_flax.py \
  --pretrained_model_name_or_path=$MODEL_NAME \
  --train_data_dir=$DATA_DIR \
  --learnable_property="object" \
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
136
137
  --placeholder_token="<cat-toy>" \
  --initializer_token="toy" \
138
139
140
  --resolution=512 \
  --train_batch_size=1 \
  --max_train_steps=3000 \
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
141
142
  --learning_rate=5.0e-04 \
  --scale_lr \
143
144
  --output_dir="textual_inversion_cat"
```
145
It should be at least 70% faster than the PyTorch script with the same configuration.
146
147
148

### Training with xformers:
You can enable memory efficient attention by [installing xFormers](https://github.com/facebookresearch/xformers#installing-xformers) and padding the `--enable_xformers_memory_efficient_attention` argument to the script. This is not available with the Flax/JAX implementation.