test_gguf.py 20.8 KB
Newer Older
1
2
3
4
5
6
7
8
import gc
import unittest

import numpy as np
import torch
import torch.nn as nn

from diffusers import (
9
10
    AuraFlowPipeline,
    AuraFlowTransformer2DModel,
hlky's avatar
hlky committed
11
    FluxControlPipeline,
12
13
14
    FluxPipeline,
    FluxTransformer2DModel,
    GGUFQuantizationConfig,
15
    HiDreamImageTransformer2DModel,
16
17
18
    SD3Transformer2DModel,
    StableDiffusion3Pipeline,
)
hlky's avatar
hlky committed
19
from diffusers.utils import load_image
20
from diffusers.utils.testing_utils import (
21
22
23
24
25
    Expectations,
    backend_empty_cache,
    backend_max_memory_allocated,
    backend_reset_peak_memory_stats,
    enable_full_determinism,
26
27
28
29
    is_gguf_available,
    nightly,
    numpy_cosine_similarity_distance,
    require_accelerate,
30
    require_big_accelerator,
31
    require_gguf_version_greater_or_equal,
hlky's avatar
hlky committed
32
    require_peft_backend,
33
34
35
36
37
38
39
    torch_device,
)


if is_gguf_available():
    from diffusers.quantizers.gguf.utils import GGUFLinear, GGUFParameter

40
41
enable_full_determinism()

42
43

@nightly
44
@require_big_accelerator
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
@require_accelerate
@require_gguf_version_greater_or_equal("0.10.0")
class GGUFSingleFileTesterMixin:
    ckpt_path = None
    model_cls = None
    torch_dtype = torch.bfloat16
    expected_memory_use_in_gb = 5

    def test_gguf_parameters(self):
        quant_storage_type = torch.uint8
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)

        for param_name, param in model.named_parameters():
            if isinstance(param, GGUFParameter):
                assert hasattr(param, "quant_type")
                assert param.dtype == quant_storage_type

    def test_gguf_linear_layers(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)

        for name, module in model.named_modules():
            if isinstance(module, torch.nn.Linear) and hasattr(module.weight, "quant_type"):
                assert module.weight.dtype == torch.uint8
70
                if module.bias is not None:
71
                    assert module.bias.dtype == self.torch_dtype
72
73
74
75
76
77
78

    def test_gguf_memory_usage(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)

        model = self.model_cls.from_single_file(
            self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
        )
79
        model.to(torch_device)
80
81
82
        assert (model.get_memory_footprint() / 1024**3) < self.expected_memory_use_in_gb
        inputs = self.get_dummy_inputs()

83
84
        backend_reset_peak_memory_stats(torch_device)
        backend_empty_cache(torch_device)
85
86
        with torch.no_grad():
            model(**inputs)
87
        max_memory = backend_max_memory_allocated(torch_device)
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
        assert (max_memory / 1024**3) < self.expected_memory_use_in_gb

    def test_keep_modules_in_fp32(self):
        r"""
        A simple tests to check if the modules under `_keep_in_fp32_modules` are kept in fp32.
        Also ensures if inference works.
        """
        _keep_in_fp32_modules = self.model_cls._keep_in_fp32_modules
        self.model_cls._keep_in_fp32_modules = ["proj_out"]

        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)

        for name, module in model.named_modules():
            if isinstance(module, torch.nn.Linear):
                if name in model._keep_in_fp32_modules:
                    assert module.weight.dtype == torch.float32
        self.model_cls._keep_in_fp32_modules = _keep_in_fp32_modules

    def test_dtype_assignment(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)

        with self.assertRaises(ValueError):
            # Tries with a `dtype`
            model.to(torch.float16)

        with self.assertRaises(ValueError):
            # Tries with a `device` and `dtype`
117
118
            device_0 = f"{torch_device}:0"
            model.to(device=device_0, dtype=torch.float16)
119
120
121
122
123
124
125
126
127
128

        with self.assertRaises(ValueError):
            # Tries with a cast
            model.float()

        with self.assertRaises(ValueError):
            # Tries with a cast
            model.half()

        # This should work
129
        model.to(torch_device)
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

    def test_dequantize_model(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        model = self.model_cls.from_single_file(self.ckpt_path, quantization_config=quantization_config)
        model.dequantize()

        def _check_for_gguf_linear(model):
            has_children = list(model.children())
            if not has_children:
                return

            for name, module in model.named_children():
                if isinstance(module, nn.Linear):
                    assert not isinstance(module, GGUFLinear), f"{name} is still GGUFLinear"
                    assert not isinstance(module.weight, GGUFParameter), f"{name} weight is still GGUFParameter"

        for name, module in model.named_children():
            _check_for_gguf_linear(module)


class FluxGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/FLUX.1-dev-gguf/blob/main/flux1-dev-Q2_K.gguf"
    torch_dtype = torch.bfloat16
    model_cls = FluxTransformer2DModel
    expected_memory_use_in_gb = 5

    def setUp(self):
        gc.collect()
158
        backend_empty_cache(torch_device)
159
160
161

    def tearDown(self):
        gc.collect()
162
        backend_empty_cache(torch_device)
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 4096, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "pooled_projections": torch.randn(
                (1, 768),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
            "img_ids": torch.randn((4096, 3), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "txt_ids": torch.randn((512, 3), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "guidance": torch.tensor([3.5]).to(torch_device, self.torch_dtype),
        }

    def test_pipeline_inference(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        transformer = self.model_cls.from_single_file(
            self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
        )
        pipe = FluxPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=self.torch_dtype
        )
        pipe.enable_model_cpu_offload()

        prompt = "a cat holding a sign that says hello"
        output = pipe(
            prompt=prompt, num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np"
        ).images[0]
        output_slice = output[:3, :3, :].flatten()
        expected_slice = np.array(
            [
                0.47265625,
                0.43359375,
                0.359375,
                0.47070312,
                0.421875,
                0.34375,
                0.46875,
                0.421875,
                0.34765625,
                0.46484375,
                0.421875,
                0.34179688,
                0.47070312,
                0.42578125,
                0.34570312,
                0.46875,
                0.42578125,
                0.3515625,
                0.45507812,
                0.4140625,
                0.33984375,
                0.4609375,
                0.41796875,
                0.34375,
                0.45898438,
                0.41796875,
                0.34375,
            ]
        )
        max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice)
        assert max_diff < 1e-4


class SD35LargeGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/stable-diffusion-3.5-large-gguf/blob/main/sd3.5_large-Q4_0.gguf"
    torch_dtype = torch.bfloat16
    model_cls = SD3Transformer2DModel
    expected_memory_use_in_gb = 5

    def setUp(self):
        gc.collect()
245
        backend_empty_cache(torch_device)
246
247
248

    def tearDown(self):
        gc.collect()
249
        backend_empty_cache(torch_device)
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 16, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "pooled_projections": torch.randn(
                (1, 2048),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
        }

    def test_pipeline_inference(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        transformer = self.model_cls.from_single_file(
            self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
        )
        pipe = StableDiffusion3Pipeline.from_pretrained(
            "stabilityai/stable-diffusion-3.5-large", transformer=transformer, torch_dtype=self.torch_dtype
        )
        pipe.enable_model_cpu_offload()

        prompt = "a cat holding a sign that says hello"
        output = pipe(
279
280
281
282
            prompt=prompt,
            num_inference_steps=2,
            generator=torch.Generator("cpu").manual_seed(0),
            output_type="np",
283
284
        ).images[0]
        output_slice = output[:3, :3, :].flatten()
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
        expected_slices = Expectations(
            {
                ("xpu", 3): np.array(
                    [
                        0.19335938,
                        0.3125,
                        0.3203125,
                        0.1328125,
                        0.3046875,
                        0.296875,
                        0.11914062,
                        0.2890625,
                        0.2890625,
                        0.16796875,
                        0.30273438,
                        0.33203125,
                        0.14648438,
                        0.31640625,
                        0.33007812,
                        0.12890625,
                        0.3046875,
                        0.30859375,
                        0.17773438,
                        0.33789062,
                        0.33203125,
                        0.16796875,
                        0.34570312,
                        0.32421875,
                        0.15625,
                        0.33203125,
                        0.31445312,
                    ]
                ),
                ("cuda", 7): np.array(
                    [
                        0.17578125,
                        0.27539062,
                        0.27734375,
                        0.11914062,
                        0.26953125,
                        0.25390625,
                        0.109375,
                        0.25390625,
                        0.25,
                        0.15039062,
                        0.26171875,
                        0.28515625,
                        0.13671875,
                        0.27734375,
                        0.28515625,
                        0.12109375,
                        0.26757812,
                        0.265625,
                        0.16210938,
                        0.29882812,
                        0.28515625,
                        0.15625,
                        0.30664062,
                        0.27734375,
                        0.14648438,
                        0.29296875,
                        0.26953125,
                    ]
                ),
            }
350
        )
351
        expected_slice = expected_slices.get_expectation()
352
353
354
355
356
357
358
359
360
361
362
363
        max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice)
        assert max_diff < 1e-4


class SD35MediumGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/stable-diffusion-3.5-medium-gguf/blob/main/sd3.5_medium-Q3_K_M.gguf"
    torch_dtype = torch.bfloat16
    model_cls = SD3Transformer2DModel
    expected_memory_use_in_gb = 2

    def setUp(self):
        gc.collect()
364
        backend_empty_cache(torch_device)
365
366
367

    def tearDown(self):
        gc.collect()
368
        backend_empty_cache(torch_device)
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 16, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "pooled_projections": torch.randn(
                (1, 2048),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
        }

    def test_pipeline_inference(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        transformer = self.model_cls.from_single_file(
            self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
        )
        pipe = StableDiffusion3Pipeline.from_pretrained(
            "stabilityai/stable-diffusion-3.5-medium", transformer=transformer, torch_dtype=self.torch_dtype
        )
        pipe.enable_model_cpu_offload()

        prompt = "a cat holding a sign that says hello"
        output = pipe(
            prompt=prompt, num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np"
        ).images[0]
        output_slice = output[:3, :3, :].flatten()
        expected_slice = np.array(
            [
                0.625,
                0.6171875,
                0.609375,
                0.65625,
                0.65234375,
                0.640625,
                0.6484375,
                0.640625,
                0.625,
                0.6484375,
                0.63671875,
                0.6484375,
                0.66796875,
                0.65625,
                0.65234375,
                0.6640625,
                0.6484375,
                0.6328125,
                0.6640625,
                0.6484375,
                0.640625,
                0.67578125,
                0.66015625,
                0.62109375,
                0.671875,
                0.65625,
                0.62109375,
            ]
        )
        max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice)
        assert max_diff < 1e-4
434
435
436
437
438
439
440
441
442
443


class AuraFlowGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/AuraFlow-v0.3-gguf/blob/main/aura_flow_0.3-Q2_K.gguf"
    torch_dtype = torch.bfloat16
    model_cls = AuraFlowTransformer2DModel
    expected_memory_use_in_gb = 4

    def setUp(self):
        gc.collect()
444
        backend_empty_cache(torch_device)
445
446
447

    def tearDown(self):
        gc.collect()
448
        backend_empty_cache(torch_device)
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509

    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 4, 64, 64), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states": torch.randn(
                (1, 512, 2048),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timestep": torch.tensor([1]).to(torch_device, self.torch_dtype),
        }

    def test_pipeline_inference(self):
        quantization_config = GGUFQuantizationConfig(compute_dtype=self.torch_dtype)
        transformer = self.model_cls.from_single_file(
            self.ckpt_path, quantization_config=quantization_config, torch_dtype=self.torch_dtype
        )
        pipe = AuraFlowPipeline.from_pretrained(
            "fal/AuraFlow-v0.3", transformer=transformer, torch_dtype=self.torch_dtype
        )
        pipe.enable_model_cpu_offload()

        prompt = "a pony holding a sign that says hello"
        output = pipe(
            prompt=prompt, num_inference_steps=2, generator=torch.Generator("cpu").manual_seed(0), output_type="np"
        ).images[0]
        output_slice = output[:3, :3, :].flatten()
        expected_slice = np.array(
            [
                0.46484375,
                0.546875,
                0.64453125,
                0.48242188,
                0.53515625,
                0.59765625,
                0.47070312,
                0.5078125,
                0.5703125,
                0.42773438,
                0.50390625,
                0.5703125,
                0.47070312,
                0.515625,
                0.57421875,
                0.45898438,
                0.48632812,
                0.53515625,
                0.4453125,
                0.5078125,
                0.56640625,
                0.47851562,
                0.5234375,
                0.57421875,
                0.48632812,
                0.5234375,
                0.56640625,
            ]
        )
        max_diff = numpy_cosine_similarity_distance(expected_slice, output_slice)
        assert max_diff < 1e-4
hlky's avatar
hlky committed
510
511
512
513


@require_peft_backend
@nightly
514
@require_big_accelerator
hlky's avatar
hlky committed
515
516
517
518
519
520
521
522
523
524
525
526
527
528
@require_accelerate
@require_gguf_version_greater_or_equal("0.10.0")
class FluxControlLoRAGGUFTests(unittest.TestCase):
    def test_lora_loading(self):
        ckpt_path = "https://huggingface.co/city96/FLUX.1-dev-gguf/blob/main/flux1-dev-Q2_K.gguf"
        transformer = FluxTransformer2DModel.from_single_file(
            ckpt_path,
            quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
            torch_dtype=torch.bfloat16,
        )
        pipe = FluxControlPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-dev",
            transformer=transformer,
            torch_dtype=torch.bfloat16,
529
        ).to(torch_device)
hlky's avatar
hlky committed
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
        pipe.load_lora_weights("black-forest-labs/FLUX.1-Canny-dev-lora")

        prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
        control_image = load_image(
            "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/control_image_robot_canny.png"
        )

        output = pipe(
            prompt=prompt,
            control_image=control_image,
            height=256,
            width=256,
            num_inference_steps=10,
            guidance_scale=30.0,
            output_type="np",
            generator=torch.manual_seed(0),
        ).images

        out_slice = output[0, -3:, -3:, -1].flatten()
        expected_slice = np.array([0.8047, 0.8359, 0.8711, 0.6875, 0.7070, 0.7383, 0.5469, 0.5820, 0.6641])

        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-3)
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579


class HiDreamGGUFSingleFileTests(GGUFSingleFileTesterMixin, unittest.TestCase):
    ckpt_path = "https://huggingface.co/city96/HiDream-I1-Dev-gguf/blob/main/hidream-i1-dev-Q2_K.gguf"
    torch_dtype = torch.bfloat16
    model_cls = HiDreamImageTransformer2DModel
    expected_memory_use_in_gb = 8

    def get_dummy_inputs(self):
        return {
            "hidden_states": torch.randn((1, 16, 128, 128), generator=torch.Generator("cpu").manual_seed(0)).to(
                torch_device, self.torch_dtype
            ),
            "encoder_hidden_states_t5": torch.randn(
                (1, 128, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "encoder_hidden_states_llama3": torch.randn(
                (32, 1, 128, 4096),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "pooled_embeds": torch.randn(
                (1, 2048),
                generator=torch.Generator("cpu").manual_seed(0),
            ).to(torch_device, self.torch_dtype),
            "timesteps": torch.tensor([1]).to(torch_device, self.torch_dtype),
        }