normalization.py 20.7 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Will Berman's avatar
Will Berman committed
16
import numbers
Sayak Paul's avatar
Sayak Paul committed
17
from typing import Dict, Optional, Tuple
18
19
20
21
22

import torch
import torch.nn as nn
import torch.nn.functional as F

Will Berman's avatar
Will Berman committed
23
from ..utils import is_torch_version
24
from .activations import get_activation
Aryan's avatar
Aryan committed
25
from .embeddings import CombinedTimestepLabelEmbeddings, PixArtAlphaCombinedTimestepSizeEmbeddings
26
27
28
29
30
31
32
33


class AdaLayerNorm(nn.Module):
    r"""
    Norm layer modified to incorporate timestep embeddings.

    Parameters:
        embedding_dim (`int`): The size of each embedding vector.
34
35
36
37
38
        num_embeddings (`int`, *optional*): The size of the embeddings dictionary.
        output_dim (`int`, *optional*):
        norm_elementwise_affine (`bool`, defaults to `False):
        norm_eps (`bool`, defaults to `False`):
        chunk_dim (`int`, defaults to `0`):
39
40
    """

41
42
43
44
45
46
47
48
49
    def __init__(
        self,
        embedding_dim: int,
        num_embeddings: Optional[int] = None,
        output_dim: Optional[int] = None,
        norm_elementwise_affine: bool = False,
        norm_eps: float = 1e-5,
        chunk_dim: int = 0,
    ):
50
        super().__init__()
51
52
53
54
55
56
57
58
59

        self.chunk_dim = chunk_dim
        output_dim = output_dim or embedding_dim * 2

        if num_embeddings is not None:
            self.emb = nn.Embedding(num_embeddings, embedding_dim)
        else:
            self.emb = None

60
        self.silu = nn.SiLU()
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
        self.linear = nn.Linear(embedding_dim, output_dim)
        self.norm = nn.LayerNorm(output_dim // 2, norm_eps, norm_elementwise_affine)

    def forward(
        self, x: torch.Tensor, timestep: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None
    ) -> torch.Tensor:
        if self.emb is not None:
            temb = self.emb(timestep)

        temb = self.linear(self.silu(temb))

        if self.chunk_dim == 1:
            # This is a bit weird why we have the order of "shift, scale" here and "scale, shift" in the
            # other if-branch. This branch is specific to CogVideoX for now.
            shift, scale = temb.chunk(2, dim=1)
            shift = shift[:, None, :]
            scale = scale[:, None, :]
        else:
            scale, shift = temb.chunk(2, dim=0)
80
81
82
83
84

        x = self.norm(x) * (1 + scale) + shift
        return x


Sayak Paul's avatar
Sayak Paul committed
85
86
87
88
89
90
91
92
93
94
95
96
class FP32LayerNorm(nn.LayerNorm):
    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
        origin_dtype = inputs.dtype
        return F.layer_norm(
            inputs.float(),
            self.normalized_shape,
            self.weight.float() if self.weight is not None else None,
            self.bias.float() if self.bias is not None else None,
            self.eps,
        ).to(origin_dtype)


YiYi Xu's avatar
YiYi Xu committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
class SD35AdaLayerNormZeroX(nn.Module):
    r"""
    Norm layer adaptive layer norm zero (AdaLN-Zero).

    Parameters:
        embedding_dim (`int`): The size of each embedding vector.
        num_embeddings (`int`): The size of the embeddings dictionary.
    """

    def __init__(self, embedding_dim: int, norm_type: str = "layer_norm", bias: bool = True) -> None:
        super().__init__()

        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, 9 * embedding_dim, bias=bias)
        if norm_type == "layer_norm":
            self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
        else:
            raise ValueError(f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm'.")

    def forward(
        self,
        hidden_states: torch.Tensor,
        emb: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, ...]:
        emb = self.linear(self.silu(emb))
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp, shift_msa2, scale_msa2, gate_msa2 = emb.chunk(
            9, dim=1
        )
        norm_hidden_states = self.norm(hidden_states)
        hidden_states = norm_hidden_states * (1 + scale_msa[:, None]) + shift_msa[:, None]
        norm_hidden_states2 = norm_hidden_states * (1 + scale_msa2[:, None]) + shift_msa2[:, None]
        return hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2


131
132
133
134
135
136
137
138
139
class AdaLayerNormZero(nn.Module):
    r"""
    Norm layer adaptive layer norm zero (adaLN-Zero).

    Parameters:
        embedding_dim (`int`): The size of each embedding vector.
        num_embeddings (`int`): The size of the embeddings dictionary.
    """

Sayak Paul's avatar
Sayak Paul committed
140
    def __init__(self, embedding_dim: int, num_embeddings: Optional[int] = None, norm_type="layer_norm", bias=True):
141
        super().__init__()
Dhruv Nair's avatar
Dhruv Nair committed
142
143
144
145
        if num_embeddings is not None:
            self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)
        else:
            self.emb = None
146
147

        self.silu = nn.SiLU()
Sayak Paul's avatar
Sayak Paul committed
148
149
150
151
152
153
154
155
156
        self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias)
        if norm_type == "layer_norm":
            self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
        elif norm_type == "fp32_layer_norm":
            self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=False, bias=False)
        else:
            raise ValueError(
                f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
            )
157
158
159
160

    def forward(
        self,
        x: torch.Tensor,
Dhruv Nair's avatar
Dhruv Nair committed
161
162
        timestep: Optional[torch.Tensor] = None,
        class_labels: Optional[torch.LongTensor] = None,
163
        hidden_dtype: Optional[torch.dtype] = None,
Dhruv Nair's avatar
Dhruv Nair committed
164
        emb: Optional[torch.Tensor] = None,
165
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
Dhruv Nair's avatar
Dhruv Nair committed
166
167
168
        if self.emb is not None:
            emb = self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)
        emb = self.linear(self.silu(emb))
169
170
171
172
173
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1)
        x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
        return x, gate_msa, shift_mlp, scale_mlp, gate_mlp


Sayak Paul's avatar
Sayak Paul committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
class AdaLayerNormZeroSingle(nn.Module):
    r"""
    Norm layer adaptive layer norm zero (adaLN-Zero).

    Parameters:
        embedding_dim (`int`): The size of each embedding vector.
        num_embeddings (`int`): The size of the embeddings dictionary.
    """

    def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
        super().__init__()

        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias)
        if norm_type == "layer_norm":
            self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
        else:
            raise ValueError(
                f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
            )

    def forward(
        self,
        x: torch.Tensor,
        emb: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        emb = self.linear(self.silu(emb))
        shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=1)
        x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
        return x, gate_msa


206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
class LuminaRMSNormZero(nn.Module):
    """
    Norm layer adaptive RMS normalization zero.

    Parameters:
        embedding_dim (`int`): The size of each embedding vector.
    """

    def __init__(self, embedding_dim: int, norm_eps: float, norm_elementwise_affine: bool):
        super().__init__()
        self.silu = nn.SiLU()
        self.linear = nn.Linear(
            min(embedding_dim, 1024),
            4 * embedding_dim,
            bias=True,
        )
        self.norm = RMSNorm(embedding_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)

    def forward(
        self,
        x: torch.Tensor,
        emb: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        # emb = self.emb(timestep, encoder_hidden_states, encoder_mask)
        emb = self.linear(self.silu(emb))
        scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1)
        x = self.norm(x) * (1 + scale_msa[:, None])

        return x, gate_msa, scale_mlp, gate_mlp


Aryan's avatar
Aryan committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
class MochiRMSNormZero(nn.Module):
    r"""
    Adaptive RMS Norm used in Mochi.

    Parameters:
        embedding_dim (`int`): The size of each embedding vector.
    """

    def __init__(
        self, embedding_dim: int, hidden_dim: int, eps: float = 1e-5, elementwise_affine: bool = False
    ) -> None:
        super().__init__()

        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, hidden_dim)
        self.norm = RMSNorm(embedding_dim, eps=eps, elementwise_affine=elementwise_affine)

    def forward(
        self, hidden_states: torch.Tensor, emb: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        emb = self.linear(self.silu(emb))
        scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1)
        hidden_states = self.norm(hidden_states) * (1 + scale_msa[:, None])

        return hidden_states, gate_msa, scale_mlp, gate_mlp


Sayak Paul's avatar
Sayak Paul committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277
class AdaLayerNormSingle(nn.Module):
    r"""
    Norm layer adaptive layer norm single (adaLN-single).

    As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3).

    Parameters:
        embedding_dim (`int`): The size of each embedding vector.
        use_additional_conditions (`bool`): To use additional conditions for normalization or not.
    """

    def __init__(self, embedding_dim: int, use_additional_conditions: bool = False):
        super().__init__()

278
        self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings(
Sayak Paul's avatar
Sayak Paul committed
279
280
281
282
283
284
285
286
287
            embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions
        )

        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)

    def forward(
        self,
        timestep: torch.Tensor,
288
289
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
        batch_size: Optional[int] = None,
Sayak Paul's avatar
Sayak Paul committed
290
291
292
        hidden_dtype: Optional[torch.dtype] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        # No modulation happening here.
Aryan's avatar
Aryan committed
293
        added_cond_kwargs = added_cond_kwargs or {"resolution": None, "aspect_ratio": None}
Sayak Paul's avatar
Sayak Paul committed
294
295
296
297
        embedded_timestep = self.emb(timestep, **added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_dtype)
        return self.linear(self.silu(embedded_timestep)), embedded_timestep


298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
class AdaGroupNorm(nn.Module):
    r"""
    GroupNorm layer modified to incorporate timestep embeddings.

    Parameters:
        embedding_dim (`int`): The size of each embedding vector.
        num_embeddings (`int`): The size of the embeddings dictionary.
        num_groups (`int`): The number of groups to separate the channels into.
        act_fn (`str`, *optional*, defaults to `None`): The activation function to use.
        eps (`float`, *optional*, defaults to `1e-5`): The epsilon value to use for numerical stability.
    """

    def __init__(
        self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5
    ):
        super().__init__()
        self.num_groups = num_groups
        self.eps = eps

        if act_fn is None:
            self.act = None
        else:
            self.act = get_activation(act_fn)

        self.linear = nn.Linear(embedding_dim, out_dim * 2)

    def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
        if self.act:
            emb = self.act(emb)
        emb = self.linear(emb)
        emb = emb[:, :, None, None]
        scale, shift = emb.chunk(2, dim=1)

        x = F.group_norm(x, self.num_groups, eps=self.eps)
        x = x * (1 + scale) + shift
        return x
Will Berman's avatar
Will Berman committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361


class AdaLayerNormContinuous(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        conditioning_embedding_dim: int,
        # NOTE: It is a bit weird that the norm layer can be configured to have scale and shift parameters
        # because the output is immediately scaled and shifted by the projected conditioning embeddings.
        # Note that AdaLayerNorm does not let the norm layer have scale and shift parameters.
        # However, this is how it was implemented in the original code, and it's rather likely you should
        # set `elementwise_affine` to False.
        elementwise_affine=True,
        eps=1e-5,
        bias=True,
        norm_type="layer_norm",
    ):
        super().__init__()
        self.silu = nn.SiLU()
        self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias)
        if norm_type == "layer_norm":
            self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias)
        elif norm_type == "rms_norm":
            self.norm = RMSNorm(embedding_dim, eps, elementwise_affine)
        else:
            raise ValueError(f"unknown norm_type {norm_type}")

    def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
362
363
        # convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT)
        emb = self.linear(self.silu(conditioning_embedding).to(x.dtype))
Will Berman's avatar
Will Berman committed
364
365
366
367
368
        scale, shift = torch.chunk(emb, 2, dim=1)
        x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
        return x


369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
class LuminaLayerNormContinuous(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        conditioning_embedding_dim: int,
        # NOTE: It is a bit weird that the norm layer can be configured to have scale and shift parameters
        # because the output is immediately scaled and shifted by the projected conditioning embeddings.
        # Note that AdaLayerNorm does not let the norm layer have scale and shift parameters.
        # However, this is how it was implemented in the original code, and it's rather likely you should
        # set `elementwise_affine` to False.
        elementwise_affine=True,
        eps=1e-5,
        bias=True,
        norm_type="layer_norm",
        out_dim: Optional[int] = None,
    ):
        super().__init__()
Aryan's avatar
Aryan committed
386

387
388
389
        # AdaLN
        self.silu = nn.SiLU()
        self.linear_1 = nn.Linear(conditioning_embedding_dim, embedding_dim, bias=bias)
Aryan's avatar
Aryan committed
390

391
392
        if norm_type == "layer_norm":
            self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias)
Aryan's avatar
Aryan committed
393
394
        elif norm_type == "rms_norm":
            self.norm = RMSNorm(embedding_dim, eps=eps, elementwise_affine=elementwise_affine)
395
396
        else:
            raise ValueError(f"unknown norm_type {norm_type}")
Aryan's avatar
Aryan committed
397
398

        self.linear_2 = None
399
        if out_dim is not None:
Aryan's avatar
Aryan committed
400
            self.linear_2 = nn.Linear(embedding_dim, out_dim, bias=bias)
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417

    def forward(
        self,
        x: torch.Tensor,
        conditioning_embedding: torch.Tensor,
    ) -> torch.Tensor:
        # convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT)
        emb = self.linear_1(self.silu(conditioning_embedding).to(x.dtype))
        scale = emb
        x = self.norm(x) * (1 + scale)[:, None, :]

        if self.linear_2 is not None:
            x = self.linear_2(x)

        return x


Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
class CogView3PlusAdaLayerNormZeroTextImage(nn.Module):
    r"""
    Norm layer adaptive layer norm zero (adaLN-Zero).

    Parameters:
        embedding_dim (`int`): The size of each embedding vector.
        num_embeddings (`int`): The size of the embeddings dictionary.
    """

    def __init__(self, embedding_dim: int, dim: int):
        super().__init__()

        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, 12 * dim, bias=True)
        self.norm_x = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
        self.norm_c = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)

    def forward(
        self,
        x: torch.Tensor,
        context: torch.Tensor,
        emb: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        emb = self.linear(self.silu(emb))
        (
            shift_msa,
            scale_msa,
            gate_msa,
            shift_mlp,
            scale_mlp,
            gate_mlp,
            c_shift_msa,
            c_scale_msa,
            c_gate_msa,
            c_shift_mlp,
            c_scale_mlp,
            c_gate_mlp,
        ) = emb.chunk(12, dim=1)
        normed_x = self.norm_x(x)
        normed_context = self.norm_c(context)
        x = normed_x * (1 + scale_msa[:, None]) + shift_msa[:, None]
        context = normed_context * (1 + c_scale_msa[:, None]) + c_shift_msa[:, None]
        return x, gate_msa, shift_mlp, scale_mlp, gate_mlp, context, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp


463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
class CogVideoXLayerNormZero(nn.Module):
    def __init__(
        self,
        conditioning_dim: int,
        embedding_dim: int,
        elementwise_affine: bool = True,
        eps: float = 1e-5,
        bias: bool = True,
    ) -> None:
        super().__init__()

        self.silu = nn.SiLU()
        self.linear = nn.Linear(conditioning_dim, 6 * embedding_dim, bias=bias)
        self.norm = nn.LayerNorm(embedding_dim, eps=eps, elementwise_affine=elementwise_affine)

    def forward(
        self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        shift, scale, gate, enc_shift, enc_scale, enc_gate = self.linear(self.silu(temb)).chunk(6, dim=1)
        hidden_states = self.norm(hidden_states) * (1 + scale)[:, None, :] + shift[:, None, :]
        encoder_hidden_states = self.norm(encoder_hidden_states) * (1 + enc_scale)[:, None, :] + enc_shift[:, None, :]
        return hidden_states, encoder_hidden_states, gate[:, None, :], enc_gate[:, None, :]


Will Berman's avatar
Will Berman committed
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
if is_torch_version(">=", "2.1.0"):
    LayerNorm = nn.LayerNorm
else:
    # Has optional bias parameter compared to torch layer norm
    # TODO: replace with torch layernorm once min required torch version >= 2.1
    class LayerNorm(nn.Module):
        def __init__(self, dim, eps: float = 1e-5, elementwise_affine: bool = True, bias: bool = True):
            super().__init__()

            self.eps = eps

            if isinstance(dim, numbers.Integral):
                dim = (dim,)

            self.dim = torch.Size(dim)

            if elementwise_affine:
                self.weight = nn.Parameter(torch.ones(dim))
                self.bias = nn.Parameter(torch.zeros(dim)) if bias else None
            else:
                self.weight = None
                self.bias = None

        def forward(self, input):
            return F.layer_norm(input, self.dim, self.weight, self.bias, self.eps)


class RMSNorm(nn.Module):
    def __init__(self, dim, eps: float, elementwise_affine: bool = True):
        super().__init__()

        self.eps = eps

        if isinstance(dim, numbers.Integral):
            dim = (dim,)

        self.dim = torch.Size(dim)

        if elementwise_affine:
            self.weight = nn.Parameter(torch.ones(dim))
        else:
            self.weight = None

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.eps)

        if self.weight is not None:
            # convert into half-precision if necessary
            if self.weight.dtype in [torch.float16, torch.bfloat16]:
                hidden_states = hidden_states.to(self.weight.dtype)
            hidden_states = hidden_states * self.weight
        else:
            hidden_states = hidden_states.to(input_dtype)

        return hidden_states


class GlobalResponseNorm(nn.Module):
    # Taken from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105
    def __init__(self, dim):
        super().__init__()
        self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
        self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))

    def forward(self, x):
        gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
        nx = gx / (gx.mean(dim=-1, keepdim=True) + 1e-6)
        return self.gamma * (x * nx) + self.beta + x
Aryan's avatar
Aryan committed
557
558
559
560
561
562
563
564
565
566
567
568


class LpNorm(nn.Module):
    def __init__(self, p: int = 2, dim: int = -1, eps: float = 1e-12):
        super().__init__()

        self.p = p
        self.dim = dim
        self.eps = eps

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        return F.normalize(hidden_states, p=self.p, dim=self.dim, eps=self.eps)