test_repaint.py 5.61 KB
Newer Older
Revist's avatar
Revist committed
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
Revist's avatar
Revist committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
Revist's avatar
Revist committed
17
18
19
20
21
22
import unittest

import numpy as np
import torch

from diffusers import RePaintPipeline, RePaintScheduler, UNet2DModel
23
from diffusers.utils.testing_utils import load_image, load_numpy, nightly, require_torch_gpu, skip_mps, torch_device
Revist's avatar
Revist committed
24

25
26
from ..pipeline_params import IMAGE_INPAINTING_BATCH_PARAMS, IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
27

Revist's avatar
Revist committed
28
29
30
31

torch.backends.cuda.matmul.allow_tf32 = False


32
33
class RepaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = RePaintPipeline
34
35
36
37
38
39
40
41
    params = IMAGE_INPAINTING_PARAMS - {"width", "height", "guidance_scale"}
    required_optional_params = PipelineTesterMixin.required_optional_params - {
        "latents",
        "num_images_per_prompt",
        "callback",
        "callback_steps",
    }
    batch_params = IMAGE_INPAINTING_BATCH_PARAMS
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    test_cpu_offload = False

    def get_dummy_components(self):
        torch.manual_seed(0)
        torch.manual_seed(0)
        unet = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        scheduler = RePaintScheduler()
        components = {"unet": unet, "scheduler": scheduler}
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        image = np.random.RandomState(seed).standard_normal((1, 3, 32, 32))
        image = torch.from_numpy(image).to(device=device, dtype=torch.float32)
        mask = (image > 0).to(device=device, dtype=torch.float32)
        inputs = {
            "image": image,
            "mask_image": mask,
            "generator": generator,
            "num_inference_steps": 5,
            "eta": 0.0,
            "jump_length": 2,
            "jump_n_sample": 2,
            "output_type": "numpy",
        }
        return inputs

    def test_repaint(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = RePaintPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([1.0000, 0.5426, 0.5497, 0.2200, 1.0000, 1.0000, 0.5623, 1.0000, 0.6274])
93

94
95
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    @skip_mps
    def test_save_load_local(self):
        return super().test_save_load_local()

    # RePaint can hardly be made deterministic since the scheduler is currently always
    # nondeterministic
    @unittest.skip("non-deterministic pipeline")
    def test_inference_batch_single_identical(self):
        return super().test_inference_batch_single_identical()

    @skip_mps
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

    @skip_mps
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

    @skip_mps
    def test_attention_slicing_forward_pass(self):
        return super().test_attention_slicing_forward_pass()

118

119
@nightly
Revist's avatar
Revist committed
120
@require_torch_gpu
121
122
123
124
125
126
class RepaintPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

Revist's avatar
Revist committed
127
128
129
130
131
132
133
134
    def test_celebahq(self):
        original_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
            "repaint/celeba_hq_256.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/mask_256.png"
        )
135
        expected_image = load_numpy(
Revist's avatar
Revist committed
136
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
137
            "repaint/celeba_hq_256_result.npy"
Revist's avatar
Revist committed
138
139
140
141
        )

        model_id = "google/ddpm-ema-celebahq-256"
        unet = UNet2DModel.from_pretrained(model_id)
142
        scheduler = RePaintScheduler.from_pretrained(model_id)
Revist's avatar
Revist committed
143
144

        repaint = RePaintPipeline(unet=unet, scheduler=scheduler).to(torch_device)
145
146
        repaint.set_progress_bar_config(disable=None)
        repaint.enable_attention_slicing()
Revist's avatar
Revist committed
147

148
        generator = torch.manual_seed(0)
Revist's avatar
Revist committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        output = repaint(
            original_image,
            mask_image,
            num_inference_steps=250,
            eta=0.0,
            jump_length=10,
            jump_n_sample=10,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        assert image.shape == (256, 256, 3)
        assert np.abs(expected_image - image).mean() < 1e-2