autoencoder_kl_ltx.py 55 KB
Newer Older
Aryan's avatar
Aryan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2024 The Lightricks team and The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional, Tuple, Union

import torch
import torch.nn as nn

from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin
from ...utils.accelerate_utils import apply_forward_hook
from ..activations import get_activation
Aryan's avatar
Aryan committed
25
from ..embeddings import PixArtAlphaCombinedTimestepSizeEmbeddings
Aryan's avatar
Aryan committed
26
27
28
29
30
31
from ..modeling_outputs import AutoencoderKLOutput
from ..modeling_utils import ModelMixin
from ..normalization import RMSNorm
from .vae import DecoderOutput, DiagonalGaussianDistribution


32
class LTXVideoCausalConv3d(nn.Module):
Aryan's avatar
Aryan committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: Union[int, Tuple[int, int, int]] = 3,
        stride: Union[int, Tuple[int, int, int]] = 1,
        dilation: Union[int, Tuple[int, int, int]] = 1,
        groups: int = 1,
        padding_mode: str = "zeros",
        is_causal: bool = True,
    ):
        super().__init__()

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.is_causal = is_causal
        self.kernel_size = kernel_size if isinstance(kernel_size, tuple) else (kernel_size, kernel_size, kernel_size)

        dilation = dilation if isinstance(dilation, tuple) else (dilation, 1, 1)
        stride = stride if isinstance(stride, tuple) else (stride, stride, stride)
        height_pad = self.kernel_size[1] // 2
        width_pad = self.kernel_size[2] // 2
        padding = (0, height_pad, width_pad)

        self.conv = nn.Conv3d(
            in_channels,
            out_channels,
            self.kernel_size,
            stride=stride,
            dilation=dilation,
            groups=groups,
            padding=padding,
            padding_mode=padding_mode,
        )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        time_kernel_size = self.kernel_size[0]

        if self.is_causal:
            pad_left = hidden_states[:, :, :1, :, :].repeat((1, 1, time_kernel_size - 1, 1, 1))
            hidden_states = torch.concatenate([pad_left, hidden_states], dim=2)
        else:
            pad_left = hidden_states[:, :, :1, :, :].repeat((1, 1, (time_kernel_size - 1) // 2, 1, 1))
            pad_right = hidden_states[:, :, -1:, :, :].repeat((1, 1, (time_kernel_size - 1) // 2, 1, 1))
            hidden_states = torch.concatenate([pad_left, hidden_states, pad_right], dim=2)

        hidden_states = self.conv(hidden_states)
        return hidden_states


83
class LTXVideoResnetBlock3d(nn.Module):
Aryan's avatar
Aryan committed
84
    r"""
85
    A 3D ResNet block used in the LTXVideo model.
Aryan's avatar
Aryan committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

    Args:
        in_channels (`int`):
            Number of input channels.
        out_channels (`int`, *optional*):
            Number of output channels. If None, defaults to `in_channels`.
        dropout (`float`, defaults to `0.0`):
            Dropout rate.
        eps (`float`, defaults to `1e-6`):
            Epsilon value for normalization layers.
        elementwise_affine (`bool`, defaults to `False`):
            Whether to enable elementwise affinity in the normalization layers.
        non_linearity (`str`, defaults to `"swish"`):
            Activation function to use.
        conv_shortcut (bool, defaults to `False`):
            Whether or not to use a convolution shortcut.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: Optional[int] = None,
        dropout: float = 0.0,
        eps: float = 1e-6,
        elementwise_affine: bool = False,
        non_linearity: str = "swish",
        is_causal: bool = True,
Aryan's avatar
Aryan committed
113
114
115
        inject_noise: bool = False,
        timestep_conditioning: bool = False,
    ) -> None:
Aryan's avatar
Aryan committed
116
117
118
119
120
121
122
        super().__init__()

        out_channels = out_channels or in_channels

        self.nonlinearity = get_activation(non_linearity)

        self.norm1 = RMSNorm(in_channels, eps=1e-8, elementwise_affine=elementwise_affine)
123
        self.conv1 = LTXVideoCausalConv3d(
Aryan's avatar
Aryan committed
124
125
126
127
128
            in_channels=in_channels, out_channels=out_channels, kernel_size=3, is_causal=is_causal
        )

        self.norm2 = RMSNorm(out_channels, eps=1e-8, elementwise_affine=elementwise_affine)
        self.dropout = nn.Dropout(dropout)
129
        self.conv2 = LTXVideoCausalConv3d(
Aryan's avatar
Aryan committed
130
131
132
133
134
135
136
            in_channels=out_channels, out_channels=out_channels, kernel_size=3, is_causal=is_causal
        )

        self.norm3 = None
        self.conv_shortcut = None
        if in_channels != out_channels:
            self.norm3 = nn.LayerNorm(in_channels, eps=eps, elementwise_affine=True, bias=True)
137
            self.conv_shortcut = LTXVideoCausalConv3d(
Aryan's avatar
Aryan committed
138
139
140
                in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, is_causal=is_causal
            )

Aryan's avatar
Aryan committed
141
142
143
144
145
146
147
148
149
150
151
152
153
        self.per_channel_scale1 = None
        self.per_channel_scale2 = None
        if inject_noise:
            self.per_channel_scale1 = nn.Parameter(torch.zeros(in_channels, 1, 1))
            self.per_channel_scale2 = nn.Parameter(torch.zeros(in_channels, 1, 1))

        self.scale_shift_table = None
        if timestep_conditioning:
            self.scale_shift_table = nn.Parameter(torch.randn(4, in_channels) / in_channels**0.5)

    def forward(
        self, inputs: torch.Tensor, temb: Optional[torch.Tensor] = None, generator: Optional[torch.Generator] = None
    ) -> torch.Tensor:
Aryan's avatar
Aryan committed
154
155
156
        hidden_states = inputs

        hidden_states = self.norm1(hidden_states.movedim(1, -1)).movedim(-1, 1)
Aryan's avatar
Aryan committed
157
158
159
160
161
162

        if self.scale_shift_table is not None:
            temb = temb.unflatten(1, (4, -1)) + self.scale_shift_table[None, ..., None, None, None]
            shift_1, scale_1, shift_2, scale_2 = temb.unbind(dim=1)
            hidden_states = hidden_states * (1 + scale_1) + shift_1

Aryan's avatar
Aryan committed
163
164
165
        hidden_states = self.nonlinearity(hidden_states)
        hidden_states = self.conv1(hidden_states)

Aryan's avatar
Aryan committed
166
167
168
169
170
171
172
        if self.per_channel_scale1 is not None:
            spatial_shape = hidden_states.shape[-2:]
            spatial_noise = torch.randn(
                spatial_shape, generator=generator, device=hidden_states.device, dtype=hidden_states.dtype
            )[None]
            hidden_states = hidden_states + (spatial_noise * self.per_channel_scale1)[None, :, None, ...]

Aryan's avatar
Aryan committed
173
        hidden_states = self.norm2(hidden_states.movedim(1, -1)).movedim(-1, 1)
Aryan's avatar
Aryan committed
174
175
176
177

        if self.scale_shift_table is not None:
            hidden_states = hidden_states * (1 + scale_2) + shift_2

Aryan's avatar
Aryan committed
178
179
180
181
        hidden_states = self.nonlinearity(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.conv2(hidden_states)

Aryan's avatar
Aryan committed
182
183
184
185
186
187
188
        if self.per_channel_scale2 is not None:
            spatial_shape = hidden_states.shape[-2:]
            spatial_noise = torch.randn(
                spatial_shape, generator=generator, device=hidden_states.device, dtype=hidden_states.dtype
            )[None]
            hidden_states = hidden_states + (spatial_noise * self.per_channel_scale2)[None, :, None, ...]

Aryan's avatar
Aryan committed
189
190
191
192
193
194
195
196
197
198
        if self.norm3 is not None:
            inputs = self.norm3(inputs.movedim(1, -1)).movedim(-1, 1)

        if self.conv_shortcut is not None:
            inputs = self.conv_shortcut(inputs)

        hidden_states = hidden_states + inputs
        return hidden_states


199
class LTXVideoUpsampler3d(nn.Module):
Aryan's avatar
Aryan committed
200
201
202
203
204
    def __init__(
        self,
        in_channels: int,
        stride: Union[int, Tuple[int, int, int]] = 1,
        is_causal: bool = True,
Aryan's avatar
Aryan committed
205
206
        residual: bool = False,
        upscale_factor: int = 1,
Aryan's avatar
Aryan committed
207
208
209
210
    ) -> None:
        super().__init__()

        self.stride = stride if isinstance(stride, tuple) else (stride, stride, stride)
Aryan's avatar
Aryan committed
211
212
        self.residual = residual
        self.upscale_factor = upscale_factor
Aryan's avatar
Aryan committed
213

Aryan's avatar
Aryan committed
214
        out_channels = (in_channels * stride[0] * stride[1] * stride[2]) // upscale_factor
Aryan's avatar
Aryan committed
215

216
        self.conv = LTXVideoCausalConv3d(
Aryan's avatar
Aryan committed
217
218
219
220
221
222
223
224
225
226
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=3,
            stride=1,
            is_causal=is_causal,
        )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        batch_size, num_channels, num_frames, height, width = hidden_states.shape

Aryan's avatar
Aryan committed
227
228
229
230
231
232
233
234
235
        if self.residual:
            residual = hidden_states.reshape(
                batch_size, -1, self.stride[0], self.stride[1], self.stride[2], num_frames, height, width
            )
            residual = residual.permute(0, 1, 5, 2, 6, 3, 7, 4).flatten(6, 7).flatten(4, 5).flatten(2, 3)
            repeats = (self.stride[0] * self.stride[1] * self.stride[2]) // self.upscale_factor
            residual = residual.repeat(1, repeats, 1, 1, 1)
            residual = residual[:, :, self.stride[0] - 1 :]

Aryan's avatar
Aryan committed
236
237
238
239
240
241
242
        hidden_states = self.conv(hidden_states)
        hidden_states = hidden_states.reshape(
            batch_size, -1, self.stride[0], self.stride[1], self.stride[2], num_frames, height, width
        )
        hidden_states = hidden_states.permute(0, 1, 5, 2, 6, 3, 7, 4).flatten(6, 7).flatten(4, 5).flatten(2, 3)
        hidden_states = hidden_states[:, :, self.stride[0] - 1 :]

Aryan's avatar
Aryan committed
243
244
245
        if self.residual:
            hidden_states = hidden_states + residual

Aryan's avatar
Aryan committed
246
247
248
        return hidden_states


249
class LTXVideoDownBlock3D(nn.Module):
Aryan's avatar
Aryan committed
250
    r"""
251
    Down block used in the LTXVideo model.
Aryan's avatar
Aryan committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

    Args:
        in_channels (`int`):
            Number of input channels.
        out_channels (`int`, *optional*):
            Number of output channels. If None, defaults to `in_channels`.
        num_layers (`int`, defaults to `1`):
            Number of resnet layers.
        dropout (`float`, defaults to `0.0`):
            Dropout rate.
        resnet_eps (`float`, defaults to `1e-6`):
            Epsilon value for normalization layers.
        resnet_act_fn (`str`, defaults to `"swish"`):
            Activation function to use.
        spatio_temporal_scale (`bool`, defaults to `True`):
            Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension.
            Whether or not to downsample across temporal dimension.
        is_causal (`bool`, defaults to `True`):
            Whether this layer behaves causally (future frames depend only on past frames) or not.
    """

    _supports_gradient_checkpointing = True

    def __init__(
        self,
        in_channels: int,
        out_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        resnet_eps: float = 1e-6,
        resnet_act_fn: str = "swish",
        spatio_temporal_scale: bool = True,
        is_causal: bool = True,
    ):
        super().__init__()

        out_channels = out_channels or in_channels

        resnets = []
        for _ in range(num_layers):
            resnets.append(
293
                LTXVideoResnetBlock3d(
Aryan's avatar
Aryan committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
                    in_channels=in_channels,
                    out_channels=in_channels,
                    dropout=dropout,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    is_causal=is_causal,
                )
            )
        self.resnets = nn.ModuleList(resnets)

        self.downsamplers = None
        if spatio_temporal_scale:
            self.downsamplers = nn.ModuleList(
                [
308
                    LTXVideoCausalConv3d(
Aryan's avatar
Aryan committed
309
310
311
312
313
314
315
316
317
318
319
                        in_channels=in_channels,
                        out_channels=in_channels,
                        kernel_size=3,
                        stride=(2, 2, 2),
                        is_causal=is_causal,
                    )
                ]
            )

        self.conv_out = None
        if in_channels != out_channels:
320
            self.conv_out = LTXVideoResnetBlock3d(
Aryan's avatar
Aryan committed
321
322
323
324
325
326
327
328
329
330
                in_channels=in_channels,
                out_channels=out_channels,
                dropout=dropout,
                eps=resnet_eps,
                non_linearity=resnet_act_fn,
                is_causal=is_causal,
            )

        self.gradient_checkpointing = False

Aryan's avatar
Aryan committed
331
332
333
334
335
336
    def forward(
        self,
        hidden_states: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
        generator: Optional[torch.Generator] = None,
    ) -> torch.Tensor:
Aryan's avatar
Aryan committed
337
338
339
340
        r"""Forward method of the `LTXDownBlock3D` class."""

        for i, resnet in enumerate(self.resnets):
            if torch.is_grad_enabled() and self.gradient_checkpointing:
341
                hidden_states = self._gradient_checkpointing_func(resnet, hidden_states, temb, generator)
Aryan's avatar
Aryan committed
342
            else:
Aryan's avatar
Aryan committed
343
                hidden_states = resnet(hidden_states, temb, generator)
Aryan's avatar
Aryan committed
344
345
346
347
348
349

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        if self.conv_out is not None:
Aryan's avatar
Aryan committed
350
            hidden_states = self.conv_out(hidden_states, temb, generator)
Aryan's avatar
Aryan committed
351
352
353
354
355

        return hidden_states


# Adapted from diffusers.models.autoencoders.autoencoder_kl_cogvideox.CogVideoMidBlock3d
356
class LTXVideoMidBlock3d(nn.Module):
Aryan's avatar
Aryan committed
357
    r"""
358
    A middle block used in the LTXVideo model.
Aryan's avatar
Aryan committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

    Args:
        in_channels (`int`):
            Number of input channels.
        num_layers (`int`, defaults to `1`):
            Number of resnet layers.
        dropout (`float`, defaults to `0.0`):
            Dropout rate.
        resnet_eps (`float`, defaults to `1e-6`):
            Epsilon value for normalization layers.
        resnet_act_fn (`str`, defaults to `"swish"`):
            Activation function to use.
        is_causal (`bool`, defaults to `True`):
            Whether this layer behaves causally (future frames depend only on past frames) or not.
    """

    _supports_gradient_checkpointing = True

    def __init__(
        self,
        in_channels: int,
        num_layers: int = 1,
        dropout: float = 0.0,
        resnet_eps: float = 1e-6,
        resnet_act_fn: str = "swish",
        is_causal: bool = True,
Aryan's avatar
Aryan committed
385
386
        inject_noise: bool = False,
        timestep_conditioning: bool = False,
Aryan's avatar
Aryan committed
387
388
389
    ) -> None:
        super().__init__()

Aryan's avatar
Aryan committed
390
391
392
393
        self.time_embedder = None
        if timestep_conditioning:
            self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(in_channels * 4, 0)

Aryan's avatar
Aryan committed
394
395
396
        resnets = []
        for _ in range(num_layers):
            resnets.append(
397
                LTXVideoResnetBlock3d(
Aryan's avatar
Aryan committed
398
399
400
401
402
403
                    in_channels=in_channels,
                    out_channels=in_channels,
                    dropout=dropout,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    is_causal=is_causal,
Aryan's avatar
Aryan committed
404
405
                    inject_noise=inject_noise,
                    timestep_conditioning=timestep_conditioning,
Aryan's avatar
Aryan committed
406
407
408
409
410
411
                )
            )
        self.resnets = nn.ModuleList(resnets)

        self.gradient_checkpointing = False

Aryan's avatar
Aryan committed
412
413
414
415
416
417
    def forward(
        self,
        hidden_states: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
        generator: Optional[torch.Generator] = None,
    ) -> torch.Tensor:
Aryan's avatar
Aryan committed
418
419
        r"""Forward method of the `LTXMidBlock3D` class."""

Aryan's avatar
Aryan committed
420
421
422
423
424
425
426
427
428
429
        if self.time_embedder is not None:
            temb = self.time_embedder(
                timestep=temb.flatten(),
                resolution=None,
                aspect_ratio=None,
                batch_size=hidden_states.size(0),
                hidden_dtype=hidden_states.dtype,
            )
            temb = temb.view(hidden_states.size(0), -1, 1, 1, 1)

Aryan's avatar
Aryan committed
430
431
        for i, resnet in enumerate(self.resnets):
            if torch.is_grad_enabled() and self.gradient_checkpointing:
432
                hidden_states = self._gradient_checkpointing_func(resnet, hidden_states, temb, generator)
Aryan's avatar
Aryan committed
433
            else:
Aryan's avatar
Aryan committed
434
                hidden_states = resnet(hidden_states, temb, generator)
Aryan's avatar
Aryan committed
435
436
437
438

        return hidden_states


439
class LTXVideoUpBlock3d(nn.Module):
Aryan's avatar
Aryan committed
440
    r"""
441
    Up block used in the LTXVideo model.
Aryan's avatar
Aryan committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474

    Args:
        in_channels (`int`):
            Number of input channels.
        out_channels (`int`, *optional*):
            Number of output channels. If None, defaults to `in_channels`.
        num_layers (`int`, defaults to `1`):
            Number of resnet layers.
        dropout (`float`, defaults to `0.0`):
            Dropout rate.
        resnet_eps (`float`, defaults to `1e-6`):
            Epsilon value for normalization layers.
        resnet_act_fn (`str`, defaults to `"swish"`):
            Activation function to use.
        spatio_temporal_scale (`bool`, defaults to `True`):
            Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension.
            Whether or not to downsample across temporal dimension.
        is_causal (`bool`, defaults to `True`):
            Whether this layer behaves causally (future frames depend only on past frames) or not.
    """

    _supports_gradient_checkpointing = True

    def __init__(
        self,
        in_channels: int,
        out_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        resnet_eps: float = 1e-6,
        resnet_act_fn: str = "swish",
        spatio_temporal_scale: bool = True,
        is_causal: bool = True,
Aryan's avatar
Aryan committed
475
476
477
478
        inject_noise: bool = False,
        timestep_conditioning: bool = False,
        upsample_residual: bool = False,
        upscale_factor: int = 1,
Aryan's avatar
Aryan committed
479
480
481
482
483
    ):
        super().__init__()

        out_channels = out_channels or in_channels

Aryan's avatar
Aryan committed
484
485
486
487
        self.time_embedder = None
        if timestep_conditioning:
            self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(in_channels * 4, 0)

Aryan's avatar
Aryan committed
488
489
        self.conv_in = None
        if in_channels != out_channels:
490
            self.conv_in = LTXVideoResnetBlock3d(
Aryan's avatar
Aryan committed
491
492
493
494
495
496
                in_channels=in_channels,
                out_channels=out_channels,
                dropout=dropout,
                eps=resnet_eps,
                non_linearity=resnet_act_fn,
                is_causal=is_causal,
Aryan's avatar
Aryan committed
497
498
                inject_noise=inject_noise,
                timestep_conditioning=timestep_conditioning,
Aryan's avatar
Aryan committed
499
500
501
502
            )

        self.upsamplers = None
        if spatio_temporal_scale:
Aryan's avatar
Aryan committed
503
504
505
506
507
508
509
510
511
512
513
            self.upsamplers = nn.ModuleList(
                [
                    LTXVideoUpsampler3d(
                        out_channels * upscale_factor,
                        stride=(2, 2, 2),
                        is_causal=is_causal,
                        residual=upsample_residual,
                        upscale_factor=upscale_factor,
                    )
                ]
            )
Aryan's avatar
Aryan committed
514
515
516
517

        resnets = []
        for _ in range(num_layers):
            resnets.append(
518
                LTXVideoResnetBlock3d(
Aryan's avatar
Aryan committed
519
520
521
522
523
524
                    in_channels=out_channels,
                    out_channels=out_channels,
                    dropout=dropout,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    is_causal=is_causal,
Aryan's avatar
Aryan committed
525
526
                    inject_noise=inject_noise,
                    timestep_conditioning=timestep_conditioning,
Aryan's avatar
Aryan committed
527
528
529
530
531
532
                )
            )
        self.resnets = nn.ModuleList(resnets)

        self.gradient_checkpointing = False

Aryan's avatar
Aryan committed
533
534
535
536
537
538
    def forward(
        self,
        hidden_states: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
        generator: Optional[torch.Generator] = None,
    ) -> torch.Tensor:
Aryan's avatar
Aryan committed
539
        if self.conv_in is not None:
Aryan's avatar
Aryan committed
540
541
542
543
544
545
546
547
548
549
550
            hidden_states = self.conv_in(hidden_states, temb, generator)

        if self.time_embedder is not None:
            temb = self.time_embedder(
                timestep=temb.flatten(),
                resolution=None,
                aspect_ratio=None,
                batch_size=hidden_states.size(0),
                hidden_dtype=hidden_states.dtype,
            )
            temb = temb.view(hidden_states.size(0), -1, 1, 1, 1)
Aryan's avatar
Aryan committed
551
552
553
554
555
556
557

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        for i, resnet in enumerate(self.resnets):
            if torch.is_grad_enabled() and self.gradient_checkpointing:
558
                hidden_states = self._gradient_checkpointing_func(resnet, hidden_states, temb, generator)
Aryan's avatar
Aryan committed
559
            else:
Aryan's avatar
Aryan committed
560
                hidden_states = resnet(hidden_states, temb, generator)
Aryan's avatar
Aryan committed
561
562
563
564

        return hidden_states


565
class LTXVideoEncoder3d(nn.Module):
Aryan's avatar
Aryan committed
566
    r"""
567
    The `LTXVideoEncoder3d` layer of a variational autoencoder that encodes input video samples to its latent
Aryan's avatar
Aryan committed
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
    representation.

    Args:
        in_channels (`int`, defaults to 3):
            Number of input channels.
        out_channels (`int`, defaults to 128):
            Number of latent channels.
        block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
            The number of output channels for each block.
        spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`:
            Whether a block should contain spatio-temporal downscaling layers or not.
        layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`):
            The number of layers per block.
        patch_size (`int`, defaults to `4`):
            The size of spatial patches.
        patch_size_t (`int`, defaults to `1`):
            The size of temporal patches.
        resnet_norm_eps (`float`, defaults to `1e-6`):
            Epsilon value for ResNet normalization layers.
        is_causal (`bool`, defaults to `True`):
            Whether this layer behaves causally (future frames depend only on past frames) or not.
    """

    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 128,
        block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
        spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
        layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
        patch_size: int = 4,
        patch_size_t: int = 1,
        resnet_norm_eps: float = 1e-6,
        is_causal: bool = True,
    ):
        super().__init__()

        self.patch_size = patch_size
        self.patch_size_t = patch_size_t
        self.in_channels = in_channels * patch_size**2

        output_channel = block_out_channels[0]

611
        self.conv_in = LTXVideoCausalConv3d(
Aryan's avatar
Aryan committed
612
613
614
615
616
617
618
619
620
621
622
623
624
625
            in_channels=self.in_channels,
            out_channels=output_channel,
            kernel_size=3,
            stride=1,
            is_causal=is_causal,
        )

        # down blocks
        num_block_out_channels = len(block_out_channels)
        self.down_blocks = nn.ModuleList([])
        for i in range(num_block_out_channels):
            input_channel = output_channel
            output_channel = block_out_channels[i + 1] if i + 1 < num_block_out_channels else block_out_channels[i]

626
            down_block = LTXVideoDownBlock3D(
Aryan's avatar
Aryan committed
627
628
629
630
631
632
633
634
635
636
637
                in_channels=input_channel,
                out_channels=output_channel,
                num_layers=layers_per_block[i],
                resnet_eps=resnet_norm_eps,
                spatio_temporal_scale=spatio_temporal_scaling[i],
                is_causal=is_causal,
            )

            self.down_blocks.append(down_block)

        # mid block
638
        self.mid_block = LTXVideoMidBlock3d(
Aryan's avatar
Aryan committed
639
640
641
642
643
644
645
646
647
            in_channels=output_channel,
            num_layers=layers_per_block[-1],
            resnet_eps=resnet_norm_eps,
            is_causal=is_causal,
        )

        # out
        self.norm_out = RMSNorm(out_channels, eps=1e-8, elementwise_affine=False)
        self.conv_act = nn.SiLU()
648
        self.conv_out = LTXVideoCausalConv3d(
Aryan's avatar
Aryan committed
649
650
651
652
653
654
            in_channels=output_channel, out_channels=out_channels + 1, kernel_size=3, stride=1, is_causal=is_causal
        )

        self.gradient_checkpointing = False

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
655
        r"""The forward method of the `LTXVideoEncoder3d` class."""
Aryan's avatar
Aryan committed
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673

        p = self.patch_size
        p_t = self.patch_size_t

        batch_size, num_channels, num_frames, height, width = hidden_states.shape
        post_patch_num_frames = num_frames // p_t
        post_patch_height = height // p
        post_patch_width = width // p

        hidden_states = hidden_states.reshape(
            batch_size, num_channels, post_patch_num_frames, p_t, post_patch_height, p, post_patch_width, p
        )
        # Thanks for driving me insane with the weird patching order :(
        hidden_states = hidden_states.permute(0, 1, 3, 7, 5, 2, 4, 6).flatten(1, 4)
        hidden_states = self.conv_in(hidden_states)

        if torch.is_grad_enabled() and self.gradient_checkpointing:
            for down_block in self.down_blocks:
674
                hidden_states = self._gradient_checkpointing_func(down_block, hidden_states)
Aryan's avatar
Aryan committed
675

676
            hidden_states = self._gradient_checkpointing_func(self.mid_block, hidden_states)
Aryan's avatar
Aryan committed
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
        else:
            for down_block in self.down_blocks:
                hidden_states = down_block(hidden_states)

            hidden_states = self.mid_block(hidden_states)

        hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
        hidden_states = self.conv_act(hidden_states)
        hidden_states = self.conv_out(hidden_states)

        last_channel = hidden_states[:, -1:]
        last_channel = last_channel.repeat(1, hidden_states.size(1) - 2, 1, 1, 1)
        hidden_states = torch.cat([hidden_states, last_channel], dim=1)

        return hidden_states


694
class LTXVideoDecoder3d(nn.Module):
Aryan's avatar
Aryan committed
695
    r"""
696
697
    The `LTXVideoDecoder3d` layer of a variational autoencoder that decodes its latent representation into an output
    sample.
Aryan's avatar
Aryan committed
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

    Args:
        in_channels (`int`, defaults to 128):
            Number of latent channels.
        out_channels (`int`, defaults to 3):
            Number of output channels.
        block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
            The number of output channels for each block.
        spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`:
            Whether a block should contain spatio-temporal upscaling layers or not.
        layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`):
            The number of layers per block.
        patch_size (`int`, defaults to `4`):
            The size of spatial patches.
        patch_size_t (`int`, defaults to `1`):
            The size of temporal patches.
        resnet_norm_eps (`float`, defaults to `1e-6`):
            Epsilon value for ResNet normalization layers.
        is_causal (`bool`, defaults to `False`):
            Whether this layer behaves causally (future frames depend only on past frames) or not.
Aryan's avatar
Aryan committed
718
719
        timestep_conditioning (`bool`, defaults to `False`):
            Whether to condition the model on timesteps.
Aryan's avatar
Aryan committed
720
721
722
723
724
725
726
727
728
729
730
731
732
    """

    def __init__(
        self,
        in_channels: int = 128,
        out_channels: int = 3,
        block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
        spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
        layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
        patch_size: int = 4,
        patch_size_t: int = 1,
        resnet_norm_eps: float = 1e-6,
        is_causal: bool = False,
Aryan's avatar
Aryan committed
733
734
735
736
        inject_noise: Tuple[bool, ...] = (False, False, False, False),
        timestep_conditioning: bool = False,
        upsample_residual: Tuple[bool, ...] = (False, False, False, False),
        upsample_factor: Tuple[bool, ...] = (1, 1, 1, 1),
Aryan's avatar
Aryan committed
737
738
739
740
741
742
743
744
745
746
    ) -> None:
        super().__init__()

        self.patch_size = patch_size
        self.patch_size_t = patch_size_t
        self.out_channels = out_channels * patch_size**2

        block_out_channels = tuple(reversed(block_out_channels))
        spatio_temporal_scaling = tuple(reversed(spatio_temporal_scaling))
        layers_per_block = tuple(reversed(layers_per_block))
Aryan's avatar
Aryan committed
747
748
749
        inject_noise = tuple(reversed(inject_noise))
        upsample_residual = tuple(reversed(upsample_residual))
        upsample_factor = tuple(reversed(upsample_factor))
Aryan's avatar
Aryan committed
750
751
        output_channel = block_out_channels[0]

752
        self.conv_in = LTXVideoCausalConv3d(
Aryan's avatar
Aryan committed
753
754
755
            in_channels=in_channels, out_channels=output_channel, kernel_size=3, stride=1, is_causal=is_causal
        )

756
        self.mid_block = LTXVideoMidBlock3d(
Aryan's avatar
Aryan committed
757
758
759
760
761
762
            in_channels=output_channel,
            num_layers=layers_per_block[0],
            resnet_eps=resnet_norm_eps,
            is_causal=is_causal,
            inject_noise=inject_noise[0],
            timestep_conditioning=timestep_conditioning,
Aryan's avatar
Aryan committed
763
764
765
766
767
768
        )

        # up blocks
        num_block_out_channels = len(block_out_channels)
        self.up_blocks = nn.ModuleList([])
        for i in range(num_block_out_channels):
Aryan's avatar
Aryan committed
769
770
            input_channel = output_channel // upsample_factor[i]
            output_channel = block_out_channels[i] // upsample_factor[i]
Aryan's avatar
Aryan committed
771

772
            up_block = LTXVideoUpBlock3d(
Aryan's avatar
Aryan committed
773
774
775
776
777
778
                in_channels=input_channel,
                out_channels=output_channel,
                num_layers=layers_per_block[i + 1],
                resnet_eps=resnet_norm_eps,
                spatio_temporal_scale=spatio_temporal_scaling[i],
                is_causal=is_causal,
Aryan's avatar
Aryan committed
779
780
781
782
                inject_noise=inject_noise[i + 1],
                timestep_conditioning=timestep_conditioning,
                upsample_residual=upsample_residual[i],
                upscale_factor=upsample_factor[i],
Aryan's avatar
Aryan committed
783
784
785
786
787
788
789
            )

            self.up_blocks.append(up_block)

        # out
        self.norm_out = RMSNorm(out_channels, eps=1e-8, elementwise_affine=False)
        self.conv_act = nn.SiLU()
790
        self.conv_out = LTXVideoCausalConv3d(
Aryan's avatar
Aryan committed
791
792
793
            in_channels=output_channel, out_channels=self.out_channels, kernel_size=3, stride=1, is_causal=is_causal
        )

Aryan's avatar
Aryan committed
794
795
796
797
798
799
800
        # timestep embedding
        self.time_embedder = None
        self.scale_shift_table = None
        if timestep_conditioning:
            self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(output_channel * 2, 0)
            self.scale_shift_table = nn.Parameter(torch.randn(2, output_channel) / output_channel**0.5)

Aryan's avatar
Aryan committed
801
802
        self.gradient_checkpointing = False

Aryan's avatar
Aryan committed
803
    def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor:
Aryan's avatar
Aryan committed
804
805
806
        hidden_states = self.conv_in(hidden_states)

        if torch.is_grad_enabled() and self.gradient_checkpointing:
807
            hidden_states = self._gradient_checkpointing_func(self.mid_block, hidden_states, temb)
Aryan's avatar
Aryan committed
808
809

            for up_block in self.up_blocks:
810
                hidden_states = self._gradient_checkpointing_func(up_block, hidden_states, temb)
Aryan's avatar
Aryan committed
811
        else:
Aryan's avatar
Aryan committed
812
            hidden_states = self.mid_block(hidden_states, temb)
Aryan's avatar
Aryan committed
813
814

            for up_block in self.up_blocks:
Aryan's avatar
Aryan committed
815
                hidden_states = up_block(hidden_states, temb)
Aryan's avatar
Aryan committed
816
817

        hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
Aryan's avatar
Aryan committed
818
819
820
821
822
823
824
825
826
827
828
829
830
831

        if self.time_embedder is not None:
            temb = self.time_embedder(
                timestep=temb.flatten(),
                resolution=None,
                aspect_ratio=None,
                batch_size=hidden_states.size(0),
                hidden_dtype=hidden_states.dtype,
            )
            temb = temb.view(hidden_states.size(0), -1, 1, 1, 1).unflatten(1, (2, -1))
            temb = temb + self.scale_shift_table[None, ..., None, None, None]
            shift, scale = temb.unbind(dim=1)
            hidden_states = hidden_states * (1 + scale) + shift

Aryan's avatar
Aryan committed
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
        hidden_states = self.conv_act(hidden_states)
        hidden_states = self.conv_out(hidden_states)

        p = self.patch_size
        p_t = self.patch_size_t

        batch_size, num_channels, num_frames, height, width = hidden_states.shape
        hidden_states = hidden_states.reshape(batch_size, -1, p_t, p, p, num_frames, height, width)
        hidden_states = hidden_states.permute(0, 1, 5, 2, 6, 4, 7, 3).flatten(6, 7).flatten(4, 5).flatten(2, 3)

        return hidden_states


class AutoencoderKLLTXVideo(ModelMixin, ConfigMixin, FromOriginalModelMixin):
    r"""
    A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in
    [LTX](https://huggingface.co/Lightricks/LTX-Video).

    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).

    Args:
        in_channels (`int`, defaults to `3`):
            Number of input channels.
        out_channels (`int`, defaults to `3`):
            Number of output channels.
        latent_channels (`int`, defaults to `128`):
            Number of latent channels.
        block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
            The number of output channels for each block.
        spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`:
            Whether a block should contain spatio-temporal downscaling or not.
        layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`):
            The number of layers per block.
        patch_size (`int`, defaults to `4`):
            The size of spatial patches.
        patch_size_t (`int`, defaults to `1`):
            The size of temporal patches.
        resnet_norm_eps (`float`, defaults to `1e-6`):
            Epsilon value for ResNet normalization layers.
        scaling_factor (`float`, *optional*, defaults to `1.0`):
            The component-wise standard deviation of the trained latent space computed using the first batch of the
            training set. This is used to scale the latent space to have unit variance when training the diffusion
            model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
            diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
            / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
            Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
        encoder_causal (`bool`, defaults to `True`):
            Whether the encoder should behave causally (future frames depend only on past frames) or not.
        decoder_causal (`bool`, defaults to `False`):
            Whether the decoder should behave causally (future frames depend only on past frames) or not.
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        latent_channels: int = 128,
        block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
Aryan's avatar
Aryan committed
894
        decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
Aryan's avatar
Aryan committed
895
        layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
Aryan's avatar
Aryan committed
896
897
898
899
900
901
902
        decoder_layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
        spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
        decoder_spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
        decoder_inject_noise: Tuple[bool, ...] = (False, False, False, False, False),
        upsample_residual: Tuple[bool, ...] = (False, False, False, False),
        upsample_factor: Tuple[int, ...] = (1, 1, 1, 1),
        timestep_conditioning: bool = False,
Aryan's avatar
Aryan committed
903
904
905
906
907
908
909
910
911
        patch_size: int = 4,
        patch_size_t: int = 1,
        resnet_norm_eps: float = 1e-6,
        scaling_factor: float = 1.0,
        encoder_causal: bool = True,
        decoder_causal: bool = False,
    ) -> None:
        super().__init__()

912
        self.encoder = LTXVideoEncoder3d(
Aryan's avatar
Aryan committed
913
914
915
916
917
918
919
920
921
922
            in_channels=in_channels,
            out_channels=latent_channels,
            block_out_channels=block_out_channels,
            spatio_temporal_scaling=spatio_temporal_scaling,
            layers_per_block=layers_per_block,
            patch_size=patch_size,
            patch_size_t=patch_size_t,
            resnet_norm_eps=resnet_norm_eps,
            is_causal=encoder_causal,
        )
923
        self.decoder = LTXVideoDecoder3d(
Aryan's avatar
Aryan committed
924
925
            in_channels=latent_channels,
            out_channels=out_channels,
Aryan's avatar
Aryan committed
926
927
928
            block_out_channels=decoder_block_out_channels,
            spatio_temporal_scaling=decoder_spatio_temporal_scaling,
            layers_per_block=decoder_layers_per_block,
Aryan's avatar
Aryan committed
929
930
931
932
            patch_size=patch_size,
            patch_size_t=patch_size_t,
            resnet_norm_eps=resnet_norm_eps,
            is_causal=decoder_causal,
Aryan's avatar
Aryan committed
933
934
935
936
            timestep_conditioning=timestep_conditioning,
            inject_noise=decoder_inject_noise,
            upsample_residual=upsample_residual,
            upsample_factor=upsample_factor,
Aryan's avatar
Aryan committed
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
        )

        latents_mean = torch.zeros((latent_channels,), requires_grad=False)
        latents_std = torch.ones((latent_channels,), requires_grad=False)
        self.register_buffer("latents_mean", latents_mean, persistent=True)
        self.register_buffer("latents_std", latents_std, persistent=True)

        self.spatial_compression_ratio = patch_size * 2 ** sum(spatio_temporal_scaling)
        self.temporal_compression_ratio = patch_size_t * 2 ** sum(spatio_temporal_scaling)

        # When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
        # to perform decoding of a single video latent at a time.
        self.use_slicing = False

        # When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
        # frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
        # intermediate tiles together, the memory requirement can be lowered.
        self.use_tiling = False

        # When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames
        # at a fixed frame batch size (based on `self.num_latent_frames_batch_sizes`), the memory requirement can be lowered.
        self.use_framewise_encoding = False
        self.use_framewise_decoding = False

        # This can be configured based on the amount of GPU memory available.
        # `16` for sample frames and `2` for latent frames are sensible defaults for consumer GPUs.
        # Setting it to higher values results in higher memory usage.
        self.num_sample_frames_batch_size = 16
        self.num_latent_frames_batch_size = 2

        # The minimal tile height and width for spatial tiling to be used
        self.tile_sample_min_height = 512
        self.tile_sample_min_width = 512
970
        self.tile_sample_min_num_frames = 16
Aryan's avatar
Aryan committed
971
972
973
974

        # The minimal distance between two spatial tiles
        self.tile_sample_stride_height = 448
        self.tile_sample_stride_width = 448
975
        self.tile_sample_stride_num_frames = 8
Aryan's avatar
Aryan committed
976
977
978
979
980

    def enable_tiling(
        self,
        tile_sample_min_height: Optional[int] = None,
        tile_sample_min_width: Optional[int] = None,
981
        tile_sample_min_num_frames: Optional[int] = None,
Aryan's avatar
Aryan committed
982
983
        tile_sample_stride_height: Optional[float] = None,
        tile_sample_stride_width: Optional[float] = None,
984
        tile_sample_stride_num_frames: Optional[float] = None,
Aryan's avatar
Aryan committed
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
    ) -> None:
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.

        Args:
            tile_sample_min_height (`int`, *optional*):
                The minimum height required for a sample to be separated into tiles across the height dimension.
            tile_sample_min_width (`int`, *optional*):
                The minimum width required for a sample to be separated into tiles across the width dimension.
            tile_sample_stride_height (`int`, *optional*):
                The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
                no tiling artifacts produced across the height dimension.
            tile_sample_stride_width (`int`, *optional*):
                The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
                artifacts produced across the width dimension.
        """
        self.use_tiling = True
        self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
        self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
1006
        self.tile_sample_min_num_frames = tile_sample_min_num_frames or self.tile_sample_min_num_frames
Aryan's avatar
Aryan committed
1007
1008
        self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
        self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
1009
        self.tile_sample_stride_num_frames = tile_sample_stride_num_frames or self.tile_sample_stride_num_frames
Aryan's avatar
Aryan committed
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034

    def disable_tiling(self) -> None:
        r"""
        Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
        decoding in one step.
        """
        self.use_tiling = False

    def enable_slicing(self) -> None:
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.use_slicing = True

    def disable_slicing(self) -> None:
        r"""
        Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
        decoding in one step.
        """
        self.use_slicing = False

    def _encode(self, x: torch.Tensor) -> torch.Tensor:
        batch_size, num_channels, num_frames, height, width = x.shape

1035
1036
1037
        if self.use_framewise_decoding and num_frames > self.tile_sample_min_num_frames:
            return self._temporal_tiled_encode(x)

Aryan's avatar
Aryan committed
1038
1039
1040
        if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
            return self.tiled_encode(x)

1041
        enc = self.encoder(x)
Aryan's avatar
Aryan committed
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071

        return enc

    @apply_forward_hook
    def encode(
        self, x: torch.Tensor, return_dict: bool = True
    ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
        """
        Encode a batch of images into latents.

        Args:
            x (`torch.Tensor`): Input batch of images.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.

        Returns:
                The latent representations of the encoded videos. If `return_dict` is True, a
                [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
        """
        if self.use_slicing and x.shape[0] > 1:
            encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
            h = torch.cat(encoded_slices)
        else:
            h = self._encode(x)
        posterior = DiagonalGaussianDistribution(h)

        if not return_dict:
            return (posterior,)
        return AutoencoderKLOutput(latent_dist=posterior)

Aryan's avatar
Aryan committed
1072
1073
1074
    def _decode(
        self, z: torch.Tensor, temb: Optional[torch.Tensor] = None, return_dict: bool = True
    ) -> Union[DecoderOutput, torch.Tensor]:
Aryan's avatar
Aryan committed
1075
1076
1077
        batch_size, num_channels, num_frames, height, width = z.shape
        tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
        tile_latent_min_width = self.tile_sample_stride_width // self.spatial_compression_ratio
1078
1079
1080
1081
        tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio

        if self.use_framewise_decoding and num_frames > tile_latent_min_num_frames:
            return self._temporal_tiled_decode(z, temb, return_dict=return_dict)
Aryan's avatar
Aryan committed
1082
1083

        if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height):
Aryan's avatar
Aryan committed
1084
            return self.tiled_decode(z, temb, return_dict=return_dict)
Aryan's avatar
Aryan committed
1085

1086
        dec = self.decoder(z, temb)
Aryan's avatar
Aryan committed
1087
1088
1089
1090
1091
1092
1093

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

    @apply_forward_hook
Aryan's avatar
Aryan committed
1094
1095
1096
    def decode(
        self, z: torch.Tensor, temb: Optional[torch.Tensor] = None, return_dict: bool = True
    ) -> Union[DecoderOutput, torch.Tensor]:
Aryan's avatar
Aryan committed
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
        """
        Decode a batch of images.

        Args:
            z (`torch.Tensor`): Input batch of latent vectors.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.
        """
        if self.use_slicing and z.shape[0] > 1:
Aryan's avatar
Aryan committed
1111
1112
1113
1114
1115
1116
            if temb is not None:
                decoded_slices = [
                    self._decode(z_slice, t_slice).sample for z_slice, t_slice in (z.split(1), temb.split(1))
                ]
            else:
                decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
Aryan's avatar
Aryan committed
1117
1118
            decoded = torch.cat(decoded_slices)
        else:
Aryan's avatar
Aryan committed
1119
            decoded = self._decode(z, temb).sample
Aryan's avatar
Aryan committed
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141

        if not return_dict:
            return (decoded,)

        return DecoderOutput(sample=decoded)

    def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
        blend_extent = min(a.shape[3], b.shape[3], blend_extent)
        for y in range(blend_extent):
            b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
                y / blend_extent
            )
        return b

    def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
        blend_extent = min(a.shape[4], b.shape[4], blend_extent)
        for x in range(blend_extent):
            b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
                x / blend_extent
            )
        return b

1142
1143
1144
1145
1146
1147
1148
1149
    def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
        blend_extent = min(a.shape[-3], b.shape[-3], blend_extent)
        for x in range(blend_extent):
            b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * (1 - x / blend_extent) + b[:, :, x, :, :] * (
                x / blend_extent
            )
        return b

Aryan's avatar
Aryan committed
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
    def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
        r"""Encode a batch of images using a tiled encoder.

        Args:
            x (`torch.Tensor`): Input batch of videos.

        Returns:
            `torch.Tensor`:
                The latent representation of the encoded videos.
        """
        batch_size, num_channels, num_frames, height, width = x.shape
        latent_height = height // self.spatial_compression_ratio
        latent_width = width // self.spatial_compression_ratio

        tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
        tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
        tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
        tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio

        blend_height = tile_latent_min_height - tile_latent_stride_height
        blend_width = tile_latent_min_width - tile_latent_stride_width

        # Split x into overlapping tiles and encode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, height, self.tile_sample_stride_height):
            row = []
            for j in range(0, width, self.tile_sample_stride_width):
1178
1179
1180
                time = self.encoder(
                    x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
                )
Aryan's avatar
Aryan committed
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200

                row.append(time)
            rows.append(row)

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_height)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_width)
                result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
            result_rows.append(torch.cat(result_row, dim=4))

        enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
        return enc

Aryan's avatar
Aryan committed
1201
1202
1203
    def tiled_decode(
        self, z: torch.Tensor, temb: Optional[torch.Tensor], return_dict: bool = True
    ) -> Union[DecoderOutput, torch.Tensor]:
Aryan's avatar
Aryan committed
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
        r"""
        Decode a batch of images using a tiled decoder.

        Args:
            z (`torch.Tensor`): Input batch of latent vectors.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.
        """

        batch_size, num_channels, num_frames, height, width = z.shape
        sample_height = height * self.spatial_compression_ratio
        sample_width = width * self.spatial_compression_ratio

        tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
        tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
        tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
        tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio

        blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
        blend_width = self.tile_sample_min_width - self.tile_sample_stride_width

        # Split z into overlapping tiles and decode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, height, tile_latent_stride_height):
            row = []
            for j in range(0, width, tile_latent_stride_width):
1236
                time = self.decoder(z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width], temb)
Aryan's avatar
Aryan committed
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260

                row.append(time)
            rows.append(row)

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_height)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_width)
                result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
            result_rows.append(torch.cat(result_row, dim=4))

        dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
    def _temporal_tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput:
        batch_size, num_channels, num_frames, height, width = x.shape
        latent_num_frames = (num_frames - 1) // self.temporal_compression_ratio + 1

        tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
        tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio
        blend_num_frames = tile_latent_min_num_frames - tile_latent_stride_num_frames

        row = []
        for i in range(0, num_frames, self.tile_sample_stride_num_frames):
            tile = x[:, :, i : i + self.tile_sample_min_num_frames + 1, :, :]
            if self.use_tiling and (height > self.tile_sample_min_height or width > self.tile_sample_min_width):
                tile = self.tiled_encode(tile)
            else:
                tile = self.encoder(tile)
            if i > 0:
                tile = tile[:, :, 1:, :, :]
            row.append(tile)

        result_row = []
        for i, tile in enumerate(row):
            if i > 0:
                tile = self.blend_t(row[i - 1], tile, blend_num_frames)
                result_row.append(tile[:, :, :tile_latent_stride_num_frames, :, :])
            else:
                result_row.append(tile[:, :, : tile_latent_stride_num_frames + 1, :, :])

        enc = torch.cat(result_row, dim=2)[:, :, :latent_num_frames]
        return enc

    def _temporal_tiled_decode(
        self, z: torch.Tensor, temb: Optional[torch.Tensor], return_dict: bool = True
    ) -> Union[DecoderOutput, torch.Tensor]:
        batch_size, num_channels, num_frames, height, width = z.shape
        num_sample_frames = (num_frames - 1) * self.temporal_compression_ratio + 1

        tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
        tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
        tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
        tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio
        blend_num_frames = self.tile_sample_min_num_frames - self.tile_sample_stride_num_frames

        row = []
        for i in range(0, num_frames, tile_latent_stride_num_frames):
            tile = z[:, :, i : i + tile_latent_min_num_frames + 1, :, :]
            if self.use_tiling and (tile.shape[-1] > tile_latent_min_width or tile.shape[-2] > tile_latent_min_height):
                decoded = self.tiled_decode(tile, temb, return_dict=True).sample
            else:
                decoded = self.decoder(tile, temb)
            if i > 0:
                decoded = decoded[:, :, :-1, :, :]
            row.append(decoded)

        result_row = []
        for i, tile in enumerate(row):
            if i > 0:
                tile = self.blend_t(row[i - 1], tile, blend_num_frames)
                tile = tile[:, :, : self.tile_sample_stride_num_frames, :, :]
                result_row.append(tile)
            else:
                result_row.append(tile[:, :, : self.tile_sample_stride_num_frames + 1, :, :])

        dec = torch.cat(result_row, dim=2)[:, :, :num_sample_frames]

        if not return_dict:
            return (dec,)
        return DecoderOutput(sample=dec)

Aryan's avatar
Aryan committed
1329
1330
1331
    def forward(
        self,
        sample: torch.Tensor,
Aryan's avatar
Aryan committed
1332
        temb: Optional[torch.Tensor] = None,
Aryan's avatar
Aryan committed
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
        sample_posterior: bool = False,
        return_dict: bool = True,
        generator: Optional[torch.Generator] = None,
    ) -> Union[torch.Tensor, torch.Tensor]:
        x = sample
        posterior = self.encode(x).latent_dist
        if sample_posterior:
            z = posterior.sample(generator=generator)
        else:
            z = posterior.mode()
Aryan's avatar
Aryan committed
1343
        dec = self.decode(z, temb)
Aryan's avatar
Aryan committed
1344
        if not return_dict:
1345
            return (dec.sample,)
Aryan's avatar
Aryan committed
1346
        return dec