autoencoder_kl_ltx.py 56.4 KB
Newer Older
Aryan's avatar
Aryan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2024 The Lightricks team and The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional, Tuple, Union

import torch
import torch.nn as nn

from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin
from ...utils.accelerate_utils import apply_forward_hook
from ..activations import get_activation
Aryan's avatar
Aryan committed
25
from ..embeddings import PixArtAlphaCombinedTimestepSizeEmbeddings
Aryan's avatar
Aryan committed
26
27
28
29
30
31
from ..modeling_outputs import AutoencoderKLOutput
from ..modeling_utils import ModelMixin
from ..normalization import RMSNorm
from .vae import DecoderOutput, DiagonalGaussianDistribution


32
class LTXVideoCausalConv3d(nn.Module):
Aryan's avatar
Aryan committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: Union[int, Tuple[int, int, int]] = 3,
        stride: Union[int, Tuple[int, int, int]] = 1,
        dilation: Union[int, Tuple[int, int, int]] = 1,
        groups: int = 1,
        padding_mode: str = "zeros",
        is_causal: bool = True,
    ):
        super().__init__()

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.is_causal = is_causal
        self.kernel_size = kernel_size if isinstance(kernel_size, tuple) else (kernel_size, kernel_size, kernel_size)

        dilation = dilation if isinstance(dilation, tuple) else (dilation, 1, 1)
        stride = stride if isinstance(stride, tuple) else (stride, stride, stride)
        height_pad = self.kernel_size[1] // 2
        width_pad = self.kernel_size[2] // 2
        padding = (0, height_pad, width_pad)

        self.conv = nn.Conv3d(
            in_channels,
            out_channels,
            self.kernel_size,
            stride=stride,
            dilation=dilation,
            groups=groups,
            padding=padding,
            padding_mode=padding_mode,
        )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        time_kernel_size = self.kernel_size[0]

        if self.is_causal:
            pad_left = hidden_states[:, :, :1, :, :].repeat((1, 1, time_kernel_size - 1, 1, 1))
            hidden_states = torch.concatenate([pad_left, hidden_states], dim=2)
        else:
            pad_left = hidden_states[:, :, :1, :, :].repeat((1, 1, (time_kernel_size - 1) // 2, 1, 1))
            pad_right = hidden_states[:, :, -1:, :, :].repeat((1, 1, (time_kernel_size - 1) // 2, 1, 1))
            hidden_states = torch.concatenate([pad_left, hidden_states, pad_right], dim=2)

        hidden_states = self.conv(hidden_states)
        return hidden_states


83
class LTXVideoResnetBlock3d(nn.Module):
Aryan's avatar
Aryan committed
84
    r"""
85
    A 3D ResNet block used in the LTXVideo model.
Aryan's avatar
Aryan committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

    Args:
        in_channels (`int`):
            Number of input channels.
        out_channels (`int`, *optional*):
            Number of output channels. If None, defaults to `in_channels`.
        dropout (`float`, defaults to `0.0`):
            Dropout rate.
        eps (`float`, defaults to `1e-6`):
            Epsilon value for normalization layers.
        elementwise_affine (`bool`, defaults to `False`):
            Whether to enable elementwise affinity in the normalization layers.
        non_linearity (`str`, defaults to `"swish"`):
            Activation function to use.
        conv_shortcut (bool, defaults to `False`):
            Whether or not to use a convolution shortcut.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: Optional[int] = None,
        dropout: float = 0.0,
        eps: float = 1e-6,
        elementwise_affine: bool = False,
        non_linearity: str = "swish",
        is_causal: bool = True,
Aryan's avatar
Aryan committed
113
114
115
        inject_noise: bool = False,
        timestep_conditioning: bool = False,
    ) -> None:
Aryan's avatar
Aryan committed
116
117
118
119
120
121
122
        super().__init__()

        out_channels = out_channels or in_channels

        self.nonlinearity = get_activation(non_linearity)

        self.norm1 = RMSNorm(in_channels, eps=1e-8, elementwise_affine=elementwise_affine)
123
        self.conv1 = LTXVideoCausalConv3d(
Aryan's avatar
Aryan committed
124
125
126
127
128
            in_channels=in_channels, out_channels=out_channels, kernel_size=3, is_causal=is_causal
        )

        self.norm2 = RMSNorm(out_channels, eps=1e-8, elementwise_affine=elementwise_affine)
        self.dropout = nn.Dropout(dropout)
129
        self.conv2 = LTXVideoCausalConv3d(
Aryan's avatar
Aryan committed
130
131
132
133
134
135
136
            in_channels=out_channels, out_channels=out_channels, kernel_size=3, is_causal=is_causal
        )

        self.norm3 = None
        self.conv_shortcut = None
        if in_channels != out_channels:
            self.norm3 = nn.LayerNorm(in_channels, eps=eps, elementwise_affine=True, bias=True)
137
            self.conv_shortcut = LTXVideoCausalConv3d(
Aryan's avatar
Aryan committed
138
139
140
                in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, is_causal=is_causal
            )

Aryan's avatar
Aryan committed
141
142
143
144
145
146
147
148
149
150
151
152
153
        self.per_channel_scale1 = None
        self.per_channel_scale2 = None
        if inject_noise:
            self.per_channel_scale1 = nn.Parameter(torch.zeros(in_channels, 1, 1))
            self.per_channel_scale2 = nn.Parameter(torch.zeros(in_channels, 1, 1))

        self.scale_shift_table = None
        if timestep_conditioning:
            self.scale_shift_table = nn.Parameter(torch.randn(4, in_channels) / in_channels**0.5)

    def forward(
        self, inputs: torch.Tensor, temb: Optional[torch.Tensor] = None, generator: Optional[torch.Generator] = None
    ) -> torch.Tensor:
Aryan's avatar
Aryan committed
154
155
156
        hidden_states = inputs

        hidden_states = self.norm1(hidden_states.movedim(1, -1)).movedim(-1, 1)
Aryan's avatar
Aryan committed
157
158
159
160
161
162

        if self.scale_shift_table is not None:
            temb = temb.unflatten(1, (4, -1)) + self.scale_shift_table[None, ..., None, None, None]
            shift_1, scale_1, shift_2, scale_2 = temb.unbind(dim=1)
            hidden_states = hidden_states * (1 + scale_1) + shift_1

Aryan's avatar
Aryan committed
163
164
165
        hidden_states = self.nonlinearity(hidden_states)
        hidden_states = self.conv1(hidden_states)

Aryan's avatar
Aryan committed
166
167
168
169
170
171
172
        if self.per_channel_scale1 is not None:
            spatial_shape = hidden_states.shape[-2:]
            spatial_noise = torch.randn(
                spatial_shape, generator=generator, device=hidden_states.device, dtype=hidden_states.dtype
            )[None]
            hidden_states = hidden_states + (spatial_noise * self.per_channel_scale1)[None, :, None, ...]

Aryan's avatar
Aryan committed
173
        hidden_states = self.norm2(hidden_states.movedim(1, -1)).movedim(-1, 1)
Aryan's avatar
Aryan committed
174
175
176
177

        if self.scale_shift_table is not None:
            hidden_states = hidden_states * (1 + scale_2) + shift_2

Aryan's avatar
Aryan committed
178
179
180
181
        hidden_states = self.nonlinearity(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.conv2(hidden_states)

Aryan's avatar
Aryan committed
182
183
184
185
186
187
188
        if self.per_channel_scale2 is not None:
            spatial_shape = hidden_states.shape[-2:]
            spatial_noise = torch.randn(
                spatial_shape, generator=generator, device=hidden_states.device, dtype=hidden_states.dtype
            )[None]
            hidden_states = hidden_states + (spatial_noise * self.per_channel_scale2)[None, :, None, ...]

Aryan's avatar
Aryan committed
189
190
191
192
193
194
195
196
197
198
        if self.norm3 is not None:
            inputs = self.norm3(inputs.movedim(1, -1)).movedim(-1, 1)

        if self.conv_shortcut is not None:
            inputs = self.conv_shortcut(inputs)

        hidden_states = hidden_states + inputs
        return hidden_states


199
class LTXVideoUpsampler3d(nn.Module):
Aryan's avatar
Aryan committed
200
201
202
203
204
    def __init__(
        self,
        in_channels: int,
        stride: Union[int, Tuple[int, int, int]] = 1,
        is_causal: bool = True,
Aryan's avatar
Aryan committed
205
206
        residual: bool = False,
        upscale_factor: int = 1,
Aryan's avatar
Aryan committed
207
208
209
210
    ) -> None:
        super().__init__()

        self.stride = stride if isinstance(stride, tuple) else (stride, stride, stride)
Aryan's avatar
Aryan committed
211
212
        self.residual = residual
        self.upscale_factor = upscale_factor
Aryan's avatar
Aryan committed
213

Aryan's avatar
Aryan committed
214
        out_channels = (in_channels * stride[0] * stride[1] * stride[2]) // upscale_factor
Aryan's avatar
Aryan committed
215

216
        self.conv = LTXVideoCausalConv3d(
Aryan's avatar
Aryan committed
217
218
219
220
221
222
223
224
225
226
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=3,
            stride=1,
            is_causal=is_causal,
        )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        batch_size, num_channels, num_frames, height, width = hidden_states.shape

Aryan's avatar
Aryan committed
227
228
229
230
231
232
233
234
235
        if self.residual:
            residual = hidden_states.reshape(
                batch_size, -1, self.stride[0], self.stride[1], self.stride[2], num_frames, height, width
            )
            residual = residual.permute(0, 1, 5, 2, 6, 3, 7, 4).flatten(6, 7).flatten(4, 5).flatten(2, 3)
            repeats = (self.stride[0] * self.stride[1] * self.stride[2]) // self.upscale_factor
            residual = residual.repeat(1, repeats, 1, 1, 1)
            residual = residual[:, :, self.stride[0] - 1 :]

Aryan's avatar
Aryan committed
236
237
238
239
240
241
242
        hidden_states = self.conv(hidden_states)
        hidden_states = hidden_states.reshape(
            batch_size, -1, self.stride[0], self.stride[1], self.stride[2], num_frames, height, width
        )
        hidden_states = hidden_states.permute(0, 1, 5, 2, 6, 3, 7, 4).flatten(6, 7).flatten(4, 5).flatten(2, 3)
        hidden_states = hidden_states[:, :, self.stride[0] - 1 :]

Aryan's avatar
Aryan committed
243
244
245
        if self.residual:
            hidden_states = hidden_states + residual

Aryan's avatar
Aryan committed
246
247
248
        return hidden_states


249
class LTXVideoDownBlock3D(nn.Module):
Aryan's avatar
Aryan committed
250
    r"""
251
    Down block used in the LTXVideo model.
Aryan's avatar
Aryan committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

    Args:
        in_channels (`int`):
            Number of input channels.
        out_channels (`int`, *optional*):
            Number of output channels. If None, defaults to `in_channels`.
        num_layers (`int`, defaults to `1`):
            Number of resnet layers.
        dropout (`float`, defaults to `0.0`):
            Dropout rate.
        resnet_eps (`float`, defaults to `1e-6`):
            Epsilon value for normalization layers.
        resnet_act_fn (`str`, defaults to `"swish"`):
            Activation function to use.
        spatio_temporal_scale (`bool`, defaults to `True`):
            Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension.
            Whether or not to downsample across temporal dimension.
        is_causal (`bool`, defaults to `True`):
            Whether this layer behaves causally (future frames depend only on past frames) or not.
    """

    _supports_gradient_checkpointing = True

    def __init__(
        self,
        in_channels: int,
        out_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        resnet_eps: float = 1e-6,
        resnet_act_fn: str = "swish",
        spatio_temporal_scale: bool = True,
        is_causal: bool = True,
    ):
        super().__init__()

        out_channels = out_channels or in_channels

        resnets = []
        for _ in range(num_layers):
            resnets.append(
293
                LTXVideoResnetBlock3d(
Aryan's avatar
Aryan committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
                    in_channels=in_channels,
                    out_channels=in_channels,
                    dropout=dropout,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    is_causal=is_causal,
                )
            )
        self.resnets = nn.ModuleList(resnets)

        self.downsamplers = None
        if spatio_temporal_scale:
            self.downsamplers = nn.ModuleList(
                [
308
                    LTXVideoCausalConv3d(
Aryan's avatar
Aryan committed
309
310
311
312
313
314
315
316
317
318
319
                        in_channels=in_channels,
                        out_channels=in_channels,
                        kernel_size=3,
                        stride=(2, 2, 2),
                        is_causal=is_causal,
                    )
                ]
            )

        self.conv_out = None
        if in_channels != out_channels:
320
            self.conv_out = LTXVideoResnetBlock3d(
Aryan's avatar
Aryan committed
321
322
323
324
325
326
327
328
329
330
                in_channels=in_channels,
                out_channels=out_channels,
                dropout=dropout,
                eps=resnet_eps,
                non_linearity=resnet_act_fn,
                is_causal=is_causal,
            )

        self.gradient_checkpointing = False

Aryan's avatar
Aryan committed
331
332
333
334
335
336
    def forward(
        self,
        hidden_states: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
        generator: Optional[torch.Generator] = None,
    ) -> torch.Tensor:
Aryan's avatar
Aryan committed
337
338
339
340
341
342
343
344
345
346
347
        r"""Forward method of the `LTXDownBlock3D` class."""

        for i, resnet in enumerate(self.resnets):
            if torch.is_grad_enabled() and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def create_forward(*inputs):
                        return module(*inputs)

                    return create_forward

Aryan's avatar
Aryan committed
348
349
350
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet), hidden_states, temb, generator
                )
Aryan's avatar
Aryan committed
351
            else:
Aryan's avatar
Aryan committed
352
                hidden_states = resnet(hidden_states, temb, generator)
Aryan's avatar
Aryan committed
353
354
355
356
357
358

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        if self.conv_out is not None:
Aryan's avatar
Aryan committed
359
            hidden_states = self.conv_out(hidden_states, temb, generator)
Aryan's avatar
Aryan committed
360
361
362
363
364

        return hidden_states


# Adapted from diffusers.models.autoencoders.autoencoder_kl_cogvideox.CogVideoMidBlock3d
365
class LTXVideoMidBlock3d(nn.Module):
Aryan's avatar
Aryan committed
366
    r"""
367
    A middle block used in the LTXVideo model.
Aryan's avatar
Aryan committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

    Args:
        in_channels (`int`):
            Number of input channels.
        num_layers (`int`, defaults to `1`):
            Number of resnet layers.
        dropout (`float`, defaults to `0.0`):
            Dropout rate.
        resnet_eps (`float`, defaults to `1e-6`):
            Epsilon value for normalization layers.
        resnet_act_fn (`str`, defaults to `"swish"`):
            Activation function to use.
        is_causal (`bool`, defaults to `True`):
            Whether this layer behaves causally (future frames depend only on past frames) or not.
    """

    _supports_gradient_checkpointing = True

    def __init__(
        self,
        in_channels: int,
        num_layers: int = 1,
        dropout: float = 0.0,
        resnet_eps: float = 1e-6,
        resnet_act_fn: str = "swish",
        is_causal: bool = True,
Aryan's avatar
Aryan committed
394
395
        inject_noise: bool = False,
        timestep_conditioning: bool = False,
Aryan's avatar
Aryan committed
396
397
398
    ) -> None:
        super().__init__()

Aryan's avatar
Aryan committed
399
400
401
402
        self.time_embedder = None
        if timestep_conditioning:
            self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(in_channels * 4, 0)

Aryan's avatar
Aryan committed
403
404
405
        resnets = []
        for _ in range(num_layers):
            resnets.append(
406
                LTXVideoResnetBlock3d(
Aryan's avatar
Aryan committed
407
408
409
410
411
412
                    in_channels=in_channels,
                    out_channels=in_channels,
                    dropout=dropout,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    is_causal=is_causal,
Aryan's avatar
Aryan committed
413
414
                    inject_noise=inject_noise,
                    timestep_conditioning=timestep_conditioning,
Aryan's avatar
Aryan committed
415
416
417
418
419
420
                )
            )
        self.resnets = nn.ModuleList(resnets)

        self.gradient_checkpointing = False

Aryan's avatar
Aryan committed
421
422
423
424
425
426
    def forward(
        self,
        hidden_states: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
        generator: Optional[torch.Generator] = None,
    ) -> torch.Tensor:
Aryan's avatar
Aryan committed
427
428
        r"""Forward method of the `LTXMidBlock3D` class."""

Aryan's avatar
Aryan committed
429
430
431
432
433
434
435
436
437
438
        if self.time_embedder is not None:
            temb = self.time_embedder(
                timestep=temb.flatten(),
                resolution=None,
                aspect_ratio=None,
                batch_size=hidden_states.size(0),
                hidden_dtype=hidden_states.dtype,
            )
            temb = temb.view(hidden_states.size(0), -1, 1, 1, 1)

Aryan's avatar
Aryan committed
439
440
441
442
443
444
445
446
447
        for i, resnet in enumerate(self.resnets):
            if torch.is_grad_enabled() and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def create_forward(*inputs):
                        return module(*inputs)

                    return create_forward

Aryan's avatar
Aryan committed
448
449
450
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet), hidden_states, temb, generator
                )
Aryan's avatar
Aryan committed
451
            else:
Aryan's avatar
Aryan committed
452
                hidden_states = resnet(hidden_states, temb, generator)
Aryan's avatar
Aryan committed
453
454
455
456

        return hidden_states


457
class LTXVideoUpBlock3d(nn.Module):
Aryan's avatar
Aryan committed
458
    r"""
459
    Up block used in the LTXVideo model.
Aryan's avatar
Aryan committed
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

    Args:
        in_channels (`int`):
            Number of input channels.
        out_channels (`int`, *optional*):
            Number of output channels. If None, defaults to `in_channels`.
        num_layers (`int`, defaults to `1`):
            Number of resnet layers.
        dropout (`float`, defaults to `0.0`):
            Dropout rate.
        resnet_eps (`float`, defaults to `1e-6`):
            Epsilon value for normalization layers.
        resnet_act_fn (`str`, defaults to `"swish"`):
            Activation function to use.
        spatio_temporal_scale (`bool`, defaults to `True`):
            Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension.
            Whether or not to downsample across temporal dimension.
        is_causal (`bool`, defaults to `True`):
            Whether this layer behaves causally (future frames depend only on past frames) or not.
    """

    _supports_gradient_checkpointing = True

    def __init__(
        self,
        in_channels: int,
        out_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        resnet_eps: float = 1e-6,
        resnet_act_fn: str = "swish",
        spatio_temporal_scale: bool = True,
        is_causal: bool = True,
Aryan's avatar
Aryan committed
493
494
495
496
        inject_noise: bool = False,
        timestep_conditioning: bool = False,
        upsample_residual: bool = False,
        upscale_factor: int = 1,
Aryan's avatar
Aryan committed
497
498
499
500
501
    ):
        super().__init__()

        out_channels = out_channels or in_channels

Aryan's avatar
Aryan committed
502
503
504
505
        self.time_embedder = None
        if timestep_conditioning:
            self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(in_channels * 4, 0)

Aryan's avatar
Aryan committed
506
507
        self.conv_in = None
        if in_channels != out_channels:
508
            self.conv_in = LTXVideoResnetBlock3d(
Aryan's avatar
Aryan committed
509
510
511
512
513
514
                in_channels=in_channels,
                out_channels=out_channels,
                dropout=dropout,
                eps=resnet_eps,
                non_linearity=resnet_act_fn,
                is_causal=is_causal,
Aryan's avatar
Aryan committed
515
516
                inject_noise=inject_noise,
                timestep_conditioning=timestep_conditioning,
Aryan's avatar
Aryan committed
517
518
519
520
            )

        self.upsamplers = None
        if spatio_temporal_scale:
Aryan's avatar
Aryan committed
521
522
523
524
525
526
527
528
529
530
531
            self.upsamplers = nn.ModuleList(
                [
                    LTXVideoUpsampler3d(
                        out_channels * upscale_factor,
                        stride=(2, 2, 2),
                        is_causal=is_causal,
                        residual=upsample_residual,
                        upscale_factor=upscale_factor,
                    )
                ]
            )
Aryan's avatar
Aryan committed
532
533
534
535

        resnets = []
        for _ in range(num_layers):
            resnets.append(
536
                LTXVideoResnetBlock3d(
Aryan's avatar
Aryan committed
537
538
539
540
541
542
                    in_channels=out_channels,
                    out_channels=out_channels,
                    dropout=dropout,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    is_causal=is_causal,
Aryan's avatar
Aryan committed
543
544
                    inject_noise=inject_noise,
                    timestep_conditioning=timestep_conditioning,
Aryan's avatar
Aryan committed
545
546
547
548
549
550
                )
            )
        self.resnets = nn.ModuleList(resnets)

        self.gradient_checkpointing = False

Aryan's avatar
Aryan committed
551
552
553
554
555
556
    def forward(
        self,
        hidden_states: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
        generator: Optional[torch.Generator] = None,
    ) -> torch.Tensor:
Aryan's avatar
Aryan committed
557
        if self.conv_in is not None:
Aryan's avatar
Aryan committed
558
559
560
561
562
563
564
565
566
567
568
            hidden_states = self.conv_in(hidden_states, temb, generator)

        if self.time_embedder is not None:
            temb = self.time_embedder(
                timestep=temb.flatten(),
                resolution=None,
                aspect_ratio=None,
                batch_size=hidden_states.size(0),
                hidden_dtype=hidden_states.dtype,
            )
            temb = temb.view(hidden_states.size(0), -1, 1, 1, 1)
Aryan's avatar
Aryan committed
569
570
571
572
573
574
575
576
577
578
579
580
581
582

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        for i, resnet in enumerate(self.resnets):
            if torch.is_grad_enabled() and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def create_forward(*inputs):
                        return module(*inputs)

                    return create_forward

Aryan's avatar
Aryan committed
583
584
585
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet), hidden_states, temb, generator
                )
Aryan's avatar
Aryan committed
586
            else:
Aryan's avatar
Aryan committed
587
                hidden_states = resnet(hidden_states, temb, generator)
Aryan's avatar
Aryan committed
588
589
590
591

        return hidden_states


592
class LTXVideoEncoder3d(nn.Module):
Aryan's avatar
Aryan committed
593
    r"""
594
    The `LTXVideoEncoder3d` layer of a variational autoencoder that encodes input video samples to its latent
Aryan's avatar
Aryan committed
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
    representation.

    Args:
        in_channels (`int`, defaults to 3):
            Number of input channels.
        out_channels (`int`, defaults to 128):
            Number of latent channels.
        block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
            The number of output channels for each block.
        spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`:
            Whether a block should contain spatio-temporal downscaling layers or not.
        layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`):
            The number of layers per block.
        patch_size (`int`, defaults to `4`):
            The size of spatial patches.
        patch_size_t (`int`, defaults to `1`):
            The size of temporal patches.
        resnet_norm_eps (`float`, defaults to `1e-6`):
            Epsilon value for ResNet normalization layers.
        is_causal (`bool`, defaults to `True`):
            Whether this layer behaves causally (future frames depend only on past frames) or not.
    """

    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 128,
        block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
        spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
        layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
        patch_size: int = 4,
        patch_size_t: int = 1,
        resnet_norm_eps: float = 1e-6,
        is_causal: bool = True,
    ):
        super().__init__()

        self.patch_size = patch_size
        self.patch_size_t = patch_size_t
        self.in_channels = in_channels * patch_size**2

        output_channel = block_out_channels[0]

638
        self.conv_in = LTXVideoCausalConv3d(
Aryan's avatar
Aryan committed
639
640
641
642
643
644
645
646
647
648
649
650
651
652
            in_channels=self.in_channels,
            out_channels=output_channel,
            kernel_size=3,
            stride=1,
            is_causal=is_causal,
        )

        # down blocks
        num_block_out_channels = len(block_out_channels)
        self.down_blocks = nn.ModuleList([])
        for i in range(num_block_out_channels):
            input_channel = output_channel
            output_channel = block_out_channels[i + 1] if i + 1 < num_block_out_channels else block_out_channels[i]

653
            down_block = LTXVideoDownBlock3D(
Aryan's avatar
Aryan committed
654
655
656
657
658
659
660
661
662
663
664
                in_channels=input_channel,
                out_channels=output_channel,
                num_layers=layers_per_block[i],
                resnet_eps=resnet_norm_eps,
                spatio_temporal_scale=spatio_temporal_scaling[i],
                is_causal=is_causal,
            )

            self.down_blocks.append(down_block)

        # mid block
665
        self.mid_block = LTXVideoMidBlock3d(
Aryan's avatar
Aryan committed
666
667
668
669
670
671
672
673
674
            in_channels=output_channel,
            num_layers=layers_per_block[-1],
            resnet_eps=resnet_norm_eps,
            is_causal=is_causal,
        )

        # out
        self.norm_out = RMSNorm(out_channels, eps=1e-8, elementwise_affine=False)
        self.conv_act = nn.SiLU()
675
        self.conv_out = LTXVideoCausalConv3d(
Aryan's avatar
Aryan committed
676
677
678
679
680
681
            in_channels=output_channel, out_channels=out_channels + 1, kernel_size=3, stride=1, is_causal=is_causal
        )

        self.gradient_checkpointing = False

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
682
        r"""The forward method of the `LTXVideoEncoder3d` class."""
Aryan's avatar
Aryan committed
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727

        p = self.patch_size
        p_t = self.patch_size_t

        batch_size, num_channels, num_frames, height, width = hidden_states.shape
        post_patch_num_frames = num_frames // p_t
        post_patch_height = height // p
        post_patch_width = width // p

        hidden_states = hidden_states.reshape(
            batch_size, num_channels, post_patch_num_frames, p_t, post_patch_height, p, post_patch_width, p
        )
        # Thanks for driving me insane with the weird patching order :(
        hidden_states = hidden_states.permute(0, 1, 3, 7, 5, 2, 4, 6).flatten(1, 4)
        hidden_states = self.conv_in(hidden_states)

        if torch.is_grad_enabled() and self.gradient_checkpointing:

            def create_custom_forward(module):
                def create_forward(*inputs):
                    return module(*inputs)

                return create_forward

            for down_block in self.down_blocks:
                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), hidden_states)

            hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), hidden_states)
        else:
            for down_block in self.down_blocks:
                hidden_states = down_block(hidden_states)

            hidden_states = self.mid_block(hidden_states)

        hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
        hidden_states = self.conv_act(hidden_states)
        hidden_states = self.conv_out(hidden_states)

        last_channel = hidden_states[:, -1:]
        last_channel = last_channel.repeat(1, hidden_states.size(1) - 2, 1, 1, 1)
        hidden_states = torch.cat([hidden_states, last_channel], dim=1)

        return hidden_states


728
class LTXVideoDecoder3d(nn.Module):
Aryan's avatar
Aryan committed
729
    r"""
730
731
    The `LTXVideoDecoder3d` layer of a variational autoencoder that decodes its latent representation into an output
    sample.
Aryan's avatar
Aryan committed
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

    Args:
        in_channels (`int`, defaults to 128):
            Number of latent channels.
        out_channels (`int`, defaults to 3):
            Number of output channels.
        block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
            The number of output channels for each block.
        spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`:
            Whether a block should contain spatio-temporal upscaling layers or not.
        layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`):
            The number of layers per block.
        patch_size (`int`, defaults to `4`):
            The size of spatial patches.
        patch_size_t (`int`, defaults to `1`):
            The size of temporal patches.
        resnet_norm_eps (`float`, defaults to `1e-6`):
            Epsilon value for ResNet normalization layers.
        is_causal (`bool`, defaults to `False`):
            Whether this layer behaves causally (future frames depend only on past frames) or not.
Aryan's avatar
Aryan committed
752
753
        timestep_conditioning (`bool`, defaults to `False`):
            Whether to condition the model on timesteps.
Aryan's avatar
Aryan committed
754
755
756
757
758
759
760
761
762
763
764
765
766
    """

    def __init__(
        self,
        in_channels: int = 128,
        out_channels: int = 3,
        block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
        spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
        layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
        patch_size: int = 4,
        patch_size_t: int = 1,
        resnet_norm_eps: float = 1e-6,
        is_causal: bool = False,
Aryan's avatar
Aryan committed
767
768
769
770
        inject_noise: Tuple[bool, ...] = (False, False, False, False),
        timestep_conditioning: bool = False,
        upsample_residual: Tuple[bool, ...] = (False, False, False, False),
        upsample_factor: Tuple[bool, ...] = (1, 1, 1, 1),
Aryan's avatar
Aryan committed
771
772
773
774
775
776
777
778
779
780
    ) -> None:
        super().__init__()

        self.patch_size = patch_size
        self.patch_size_t = patch_size_t
        self.out_channels = out_channels * patch_size**2

        block_out_channels = tuple(reversed(block_out_channels))
        spatio_temporal_scaling = tuple(reversed(spatio_temporal_scaling))
        layers_per_block = tuple(reversed(layers_per_block))
Aryan's avatar
Aryan committed
781
782
783
        inject_noise = tuple(reversed(inject_noise))
        upsample_residual = tuple(reversed(upsample_residual))
        upsample_factor = tuple(reversed(upsample_factor))
Aryan's avatar
Aryan committed
784
785
        output_channel = block_out_channels[0]

786
        self.conv_in = LTXVideoCausalConv3d(
Aryan's avatar
Aryan committed
787
788
789
            in_channels=in_channels, out_channels=output_channel, kernel_size=3, stride=1, is_causal=is_causal
        )

790
        self.mid_block = LTXVideoMidBlock3d(
Aryan's avatar
Aryan committed
791
792
793
794
795
796
            in_channels=output_channel,
            num_layers=layers_per_block[0],
            resnet_eps=resnet_norm_eps,
            is_causal=is_causal,
            inject_noise=inject_noise[0],
            timestep_conditioning=timestep_conditioning,
Aryan's avatar
Aryan committed
797
798
799
800
801
802
        )

        # up blocks
        num_block_out_channels = len(block_out_channels)
        self.up_blocks = nn.ModuleList([])
        for i in range(num_block_out_channels):
Aryan's avatar
Aryan committed
803
804
            input_channel = output_channel // upsample_factor[i]
            output_channel = block_out_channels[i] // upsample_factor[i]
Aryan's avatar
Aryan committed
805

806
            up_block = LTXVideoUpBlock3d(
Aryan's avatar
Aryan committed
807
808
809
810
811
812
                in_channels=input_channel,
                out_channels=output_channel,
                num_layers=layers_per_block[i + 1],
                resnet_eps=resnet_norm_eps,
                spatio_temporal_scale=spatio_temporal_scaling[i],
                is_causal=is_causal,
Aryan's avatar
Aryan committed
813
814
815
816
                inject_noise=inject_noise[i + 1],
                timestep_conditioning=timestep_conditioning,
                upsample_residual=upsample_residual[i],
                upscale_factor=upsample_factor[i],
Aryan's avatar
Aryan committed
817
818
819
820
821
822
823
            )

            self.up_blocks.append(up_block)

        # out
        self.norm_out = RMSNorm(out_channels, eps=1e-8, elementwise_affine=False)
        self.conv_act = nn.SiLU()
824
        self.conv_out = LTXVideoCausalConv3d(
Aryan's avatar
Aryan committed
825
826
827
            in_channels=output_channel, out_channels=self.out_channels, kernel_size=3, stride=1, is_causal=is_causal
        )

Aryan's avatar
Aryan committed
828
829
830
831
832
833
834
        # timestep embedding
        self.time_embedder = None
        self.scale_shift_table = None
        if timestep_conditioning:
            self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(output_channel * 2, 0)
            self.scale_shift_table = nn.Parameter(torch.randn(2, output_channel) / output_channel**0.5)

Aryan's avatar
Aryan committed
835
836
        self.gradient_checkpointing = False

Aryan's avatar
Aryan committed
837
    def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor:
Aryan's avatar
Aryan committed
838
839
840
841
842
843
844
845
846
847
        hidden_states = self.conv_in(hidden_states)

        if torch.is_grad_enabled() and self.gradient_checkpointing:

            def create_custom_forward(module):
                def create_forward(*inputs):
                    return module(*inputs)

                return create_forward

Aryan's avatar
Aryan committed
848
849
850
            hidden_states = torch.utils.checkpoint.checkpoint(
                create_custom_forward(self.mid_block), hidden_states, temb
            )
Aryan's avatar
Aryan committed
851
852

            for up_block in self.up_blocks:
Aryan's avatar
Aryan committed
853
                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), hidden_states, temb)
Aryan's avatar
Aryan committed
854
        else:
Aryan's avatar
Aryan committed
855
            hidden_states = self.mid_block(hidden_states, temb)
Aryan's avatar
Aryan committed
856
857

            for up_block in self.up_blocks:
Aryan's avatar
Aryan committed
858
                hidden_states = up_block(hidden_states, temb)
Aryan's avatar
Aryan committed
859
860

        hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
Aryan's avatar
Aryan committed
861
862
863
864
865
866
867
868
869
870
871
872
873
874

        if self.time_embedder is not None:
            temb = self.time_embedder(
                timestep=temb.flatten(),
                resolution=None,
                aspect_ratio=None,
                batch_size=hidden_states.size(0),
                hidden_dtype=hidden_states.dtype,
            )
            temb = temb.view(hidden_states.size(0), -1, 1, 1, 1).unflatten(1, (2, -1))
            temb = temb + self.scale_shift_table[None, ..., None, None, None]
            shift, scale = temb.unbind(dim=1)
            hidden_states = hidden_states * (1 + scale) + shift

Aryan's avatar
Aryan committed
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
        hidden_states = self.conv_act(hidden_states)
        hidden_states = self.conv_out(hidden_states)

        p = self.patch_size
        p_t = self.patch_size_t

        batch_size, num_channels, num_frames, height, width = hidden_states.shape
        hidden_states = hidden_states.reshape(batch_size, -1, p_t, p, p, num_frames, height, width)
        hidden_states = hidden_states.permute(0, 1, 5, 2, 6, 4, 7, 3).flatten(6, 7).flatten(4, 5).flatten(2, 3)

        return hidden_states


class AutoencoderKLLTXVideo(ModelMixin, ConfigMixin, FromOriginalModelMixin):
    r"""
    A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in
    [LTX](https://huggingface.co/Lightricks/LTX-Video).

    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).

    Args:
        in_channels (`int`, defaults to `3`):
            Number of input channels.
        out_channels (`int`, defaults to `3`):
            Number of output channels.
        latent_channels (`int`, defaults to `128`):
            Number of latent channels.
        block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
            The number of output channels for each block.
        spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`:
            Whether a block should contain spatio-temporal downscaling or not.
        layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`):
            The number of layers per block.
        patch_size (`int`, defaults to `4`):
            The size of spatial patches.
        patch_size_t (`int`, defaults to `1`):
            The size of temporal patches.
        resnet_norm_eps (`float`, defaults to `1e-6`):
            Epsilon value for ResNet normalization layers.
        scaling_factor (`float`, *optional*, defaults to `1.0`):
            The component-wise standard deviation of the trained latent space computed using the first batch of the
            training set. This is used to scale the latent space to have unit variance when training the diffusion
            model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
            diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
            / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
            Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
        encoder_causal (`bool`, defaults to `True`):
            Whether the encoder should behave causally (future frames depend only on past frames) or not.
        decoder_causal (`bool`, defaults to `False`):
            Whether the decoder should behave causally (future frames depend only on past frames) or not.
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        latent_channels: int = 128,
        block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
Aryan's avatar
Aryan committed
937
        decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
Aryan's avatar
Aryan committed
938
        layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
Aryan's avatar
Aryan committed
939
940
941
942
943
944
945
        decoder_layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
        spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
        decoder_spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
        decoder_inject_noise: Tuple[bool, ...] = (False, False, False, False, False),
        upsample_residual: Tuple[bool, ...] = (False, False, False, False),
        upsample_factor: Tuple[int, ...] = (1, 1, 1, 1),
        timestep_conditioning: bool = False,
Aryan's avatar
Aryan committed
946
947
948
949
950
951
952
953
954
        patch_size: int = 4,
        patch_size_t: int = 1,
        resnet_norm_eps: float = 1e-6,
        scaling_factor: float = 1.0,
        encoder_causal: bool = True,
        decoder_causal: bool = False,
    ) -> None:
        super().__init__()

955
        self.encoder = LTXVideoEncoder3d(
Aryan's avatar
Aryan committed
956
957
958
959
960
961
962
963
964
965
            in_channels=in_channels,
            out_channels=latent_channels,
            block_out_channels=block_out_channels,
            spatio_temporal_scaling=spatio_temporal_scaling,
            layers_per_block=layers_per_block,
            patch_size=patch_size,
            patch_size_t=patch_size_t,
            resnet_norm_eps=resnet_norm_eps,
            is_causal=encoder_causal,
        )
966
        self.decoder = LTXVideoDecoder3d(
Aryan's avatar
Aryan committed
967
968
            in_channels=latent_channels,
            out_channels=out_channels,
Aryan's avatar
Aryan committed
969
970
971
            block_out_channels=decoder_block_out_channels,
            spatio_temporal_scaling=decoder_spatio_temporal_scaling,
            layers_per_block=decoder_layers_per_block,
Aryan's avatar
Aryan committed
972
973
974
975
            patch_size=patch_size,
            patch_size_t=patch_size_t,
            resnet_norm_eps=resnet_norm_eps,
            is_causal=decoder_causal,
Aryan's avatar
Aryan committed
976
977
978
979
            timestep_conditioning=timestep_conditioning,
            inject_noise=decoder_inject_noise,
            upsample_residual=upsample_residual,
            upsample_factor=upsample_factor,
Aryan's avatar
Aryan committed
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
        )

        latents_mean = torch.zeros((latent_channels,), requires_grad=False)
        latents_std = torch.ones((latent_channels,), requires_grad=False)
        self.register_buffer("latents_mean", latents_mean, persistent=True)
        self.register_buffer("latents_std", latents_std, persistent=True)

        self.spatial_compression_ratio = patch_size * 2 ** sum(spatio_temporal_scaling)
        self.temporal_compression_ratio = patch_size_t * 2 ** sum(spatio_temporal_scaling)

        # When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
        # to perform decoding of a single video latent at a time.
        self.use_slicing = False

        # When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
        # frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
        # intermediate tiles together, the memory requirement can be lowered.
        self.use_tiling = False

        # When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames
        # at a fixed frame batch size (based on `self.num_latent_frames_batch_sizes`), the memory requirement can be lowered.
        self.use_framewise_encoding = False
        self.use_framewise_decoding = False

        # This can be configured based on the amount of GPU memory available.
        # `16` for sample frames and `2` for latent frames are sensible defaults for consumer GPUs.
        # Setting it to higher values results in higher memory usage.
        self.num_sample_frames_batch_size = 16
        self.num_latent_frames_batch_size = 2

        # The minimal tile height and width for spatial tiling to be used
        self.tile_sample_min_height = 512
        self.tile_sample_min_width = 512
1013
        self.tile_sample_min_num_frames = 16
Aryan's avatar
Aryan committed
1014
1015
1016
1017

        # The minimal distance between two spatial tiles
        self.tile_sample_stride_height = 448
        self.tile_sample_stride_width = 448
1018
        self.tile_sample_stride_num_frames = 8
Aryan's avatar
Aryan committed
1019
1020

    def _set_gradient_checkpointing(self, module, value=False):
1021
        if isinstance(module, (LTXVideoEncoder3d, LTXVideoDecoder3d)):
Aryan's avatar
Aryan committed
1022
1023
1024
1025
1026
1027
            module.gradient_checkpointing = value

    def enable_tiling(
        self,
        tile_sample_min_height: Optional[int] = None,
        tile_sample_min_width: Optional[int] = None,
1028
        tile_sample_min_num_frames: Optional[int] = None,
Aryan's avatar
Aryan committed
1029
1030
        tile_sample_stride_height: Optional[float] = None,
        tile_sample_stride_width: Optional[float] = None,
1031
        tile_sample_stride_num_frames: Optional[float] = None,
Aryan's avatar
Aryan committed
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
    ) -> None:
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.

        Args:
            tile_sample_min_height (`int`, *optional*):
                The minimum height required for a sample to be separated into tiles across the height dimension.
            tile_sample_min_width (`int`, *optional*):
                The minimum width required for a sample to be separated into tiles across the width dimension.
            tile_sample_stride_height (`int`, *optional*):
                The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
                no tiling artifacts produced across the height dimension.
            tile_sample_stride_width (`int`, *optional*):
                The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
                artifacts produced across the width dimension.
        """
        self.use_tiling = True
        self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
        self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
1053
        self.tile_sample_min_num_frames = tile_sample_min_num_frames or self.tile_sample_min_num_frames
Aryan's avatar
Aryan committed
1054
1055
        self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
        self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
1056
        self.tile_sample_stride_num_frames = tile_sample_stride_num_frames or self.tile_sample_stride_num_frames
Aryan's avatar
Aryan committed
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081

    def disable_tiling(self) -> None:
        r"""
        Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
        decoding in one step.
        """
        self.use_tiling = False

    def enable_slicing(self) -> None:
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.use_slicing = True

    def disable_slicing(self) -> None:
        r"""
        Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
        decoding in one step.
        """
        self.use_slicing = False

    def _encode(self, x: torch.Tensor) -> torch.Tensor:
        batch_size, num_channels, num_frames, height, width = x.shape

1082
1083
1084
        if self.use_framewise_decoding and num_frames > self.tile_sample_min_num_frames:
            return self._temporal_tiled_encode(x)

Aryan's avatar
Aryan committed
1085
1086
1087
        if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
            return self.tiled_encode(x)

1088
        enc = self.encoder(x)
Aryan's avatar
Aryan committed
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118

        return enc

    @apply_forward_hook
    def encode(
        self, x: torch.Tensor, return_dict: bool = True
    ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
        """
        Encode a batch of images into latents.

        Args:
            x (`torch.Tensor`): Input batch of images.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.

        Returns:
                The latent representations of the encoded videos. If `return_dict` is True, a
                [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
        """
        if self.use_slicing and x.shape[0] > 1:
            encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
            h = torch.cat(encoded_slices)
        else:
            h = self._encode(x)
        posterior = DiagonalGaussianDistribution(h)

        if not return_dict:
            return (posterior,)
        return AutoencoderKLOutput(latent_dist=posterior)

Aryan's avatar
Aryan committed
1119
1120
1121
    def _decode(
        self, z: torch.Tensor, temb: Optional[torch.Tensor] = None, return_dict: bool = True
    ) -> Union[DecoderOutput, torch.Tensor]:
Aryan's avatar
Aryan committed
1122
1123
1124
        batch_size, num_channels, num_frames, height, width = z.shape
        tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
        tile_latent_min_width = self.tile_sample_stride_width // self.spatial_compression_ratio
1125
1126
1127
1128
        tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio

        if self.use_framewise_decoding and num_frames > tile_latent_min_num_frames:
            return self._temporal_tiled_decode(z, temb, return_dict=return_dict)
Aryan's avatar
Aryan committed
1129
1130

        if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height):
Aryan's avatar
Aryan committed
1131
            return self.tiled_decode(z, temb, return_dict=return_dict)
Aryan's avatar
Aryan committed
1132

1133
        dec = self.decoder(z, temb)
Aryan's avatar
Aryan committed
1134
1135
1136
1137
1138
1139
1140

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

    @apply_forward_hook
Aryan's avatar
Aryan committed
1141
1142
1143
    def decode(
        self, z: torch.Tensor, temb: Optional[torch.Tensor] = None, return_dict: bool = True
    ) -> Union[DecoderOutput, torch.Tensor]:
Aryan's avatar
Aryan committed
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
        """
        Decode a batch of images.

        Args:
            z (`torch.Tensor`): Input batch of latent vectors.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.
        """
        if self.use_slicing and z.shape[0] > 1:
Aryan's avatar
Aryan committed
1158
1159
1160
1161
1162
1163
            if temb is not None:
                decoded_slices = [
                    self._decode(z_slice, t_slice).sample for z_slice, t_slice in (z.split(1), temb.split(1))
                ]
            else:
                decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
Aryan's avatar
Aryan committed
1164
1165
            decoded = torch.cat(decoded_slices)
        else:
Aryan's avatar
Aryan committed
1166
            decoded = self._decode(z, temb).sample
Aryan's avatar
Aryan committed
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188

        if not return_dict:
            return (decoded,)

        return DecoderOutput(sample=decoded)

    def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
        blend_extent = min(a.shape[3], b.shape[3], blend_extent)
        for y in range(blend_extent):
            b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
                y / blend_extent
            )
        return b

    def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
        blend_extent = min(a.shape[4], b.shape[4], blend_extent)
        for x in range(blend_extent):
            b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
                x / blend_extent
            )
        return b

1189
1190
1191
1192
1193
1194
1195
1196
    def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
        blend_extent = min(a.shape[-3], b.shape[-3], blend_extent)
        for x in range(blend_extent):
            b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * (1 - x / blend_extent) + b[:, :, x, :, :] * (
                x / blend_extent
            )
        return b

Aryan's avatar
Aryan committed
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
    def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
        r"""Encode a batch of images using a tiled encoder.

        Args:
            x (`torch.Tensor`): Input batch of videos.

        Returns:
            `torch.Tensor`:
                The latent representation of the encoded videos.
        """
        batch_size, num_channels, num_frames, height, width = x.shape
        latent_height = height // self.spatial_compression_ratio
        latent_width = width // self.spatial_compression_ratio

        tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
        tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
        tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
        tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio

        blend_height = tile_latent_min_height - tile_latent_stride_height
        blend_width = tile_latent_min_width - tile_latent_stride_width

        # Split x into overlapping tiles and encode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, height, self.tile_sample_stride_height):
            row = []
            for j in range(0, width, self.tile_sample_stride_width):
1225
1226
1227
                time = self.encoder(
                    x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
                )
Aryan's avatar
Aryan committed
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

                row.append(time)
            rows.append(row)

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_height)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_width)
                result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
            result_rows.append(torch.cat(result_row, dim=4))

        enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
        return enc

Aryan's avatar
Aryan committed
1248
1249
1250
    def tiled_decode(
        self, z: torch.Tensor, temb: Optional[torch.Tensor], return_dict: bool = True
    ) -> Union[DecoderOutput, torch.Tensor]:
Aryan's avatar
Aryan committed
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
        r"""
        Decode a batch of images using a tiled decoder.

        Args:
            z (`torch.Tensor`): Input batch of latent vectors.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.
        """

        batch_size, num_channels, num_frames, height, width = z.shape
        sample_height = height * self.spatial_compression_ratio
        sample_width = width * self.spatial_compression_ratio

        tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
        tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
        tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
        tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio

        blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
        blend_width = self.tile_sample_min_width - self.tile_sample_stride_width

        # Split z into overlapping tiles and decode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, height, tile_latent_stride_height):
            row = []
            for j in range(0, width, tile_latent_stride_width):
1283
                time = self.decoder(z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width], temb)
Aryan's avatar
Aryan committed
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307

                row.append(time)
            rows.append(row)

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_height)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_width)
                result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
            result_rows.append(torch.cat(result_row, dim=4))

        dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
    def _temporal_tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput:
        batch_size, num_channels, num_frames, height, width = x.shape
        latent_num_frames = (num_frames - 1) // self.temporal_compression_ratio + 1

        tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
        tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio
        blend_num_frames = tile_latent_min_num_frames - tile_latent_stride_num_frames

        row = []
        for i in range(0, num_frames, self.tile_sample_stride_num_frames):
            tile = x[:, :, i : i + self.tile_sample_min_num_frames + 1, :, :]
            if self.use_tiling and (height > self.tile_sample_min_height or width > self.tile_sample_min_width):
                tile = self.tiled_encode(tile)
            else:
                tile = self.encoder(tile)
            if i > 0:
                tile = tile[:, :, 1:, :, :]
            row.append(tile)

        result_row = []
        for i, tile in enumerate(row):
            if i > 0:
                tile = self.blend_t(row[i - 1], tile, blend_num_frames)
                result_row.append(tile[:, :, :tile_latent_stride_num_frames, :, :])
            else:
                result_row.append(tile[:, :, : tile_latent_stride_num_frames + 1, :, :])

        enc = torch.cat(result_row, dim=2)[:, :, :latent_num_frames]
        return enc

    def _temporal_tiled_decode(
        self, z: torch.Tensor, temb: Optional[torch.Tensor], return_dict: bool = True
    ) -> Union[DecoderOutput, torch.Tensor]:
        batch_size, num_channels, num_frames, height, width = z.shape
        num_sample_frames = (num_frames - 1) * self.temporal_compression_ratio + 1

        tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
        tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
        tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
        tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio
        blend_num_frames = self.tile_sample_min_num_frames - self.tile_sample_stride_num_frames

        row = []
        for i in range(0, num_frames, tile_latent_stride_num_frames):
            tile = z[:, :, i : i + tile_latent_min_num_frames + 1, :, :]
            if self.use_tiling and (tile.shape[-1] > tile_latent_min_width or tile.shape[-2] > tile_latent_min_height):
                decoded = self.tiled_decode(tile, temb, return_dict=True).sample
            else:
                decoded = self.decoder(tile, temb)
            if i > 0:
                decoded = decoded[:, :, :-1, :, :]
            row.append(decoded)

        result_row = []
        for i, tile in enumerate(row):
            if i > 0:
                tile = self.blend_t(row[i - 1], tile, blend_num_frames)
                tile = tile[:, :, : self.tile_sample_stride_num_frames, :, :]
                result_row.append(tile)
            else:
                result_row.append(tile[:, :, : self.tile_sample_stride_num_frames + 1, :, :])

        dec = torch.cat(result_row, dim=2)[:, :, :num_sample_frames]

        if not return_dict:
            return (dec,)
        return DecoderOutput(sample=dec)

Aryan's avatar
Aryan committed
1376
1377
1378
    def forward(
        self,
        sample: torch.Tensor,
Aryan's avatar
Aryan committed
1379
        temb: Optional[torch.Tensor] = None,
Aryan's avatar
Aryan committed
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
        sample_posterior: bool = False,
        return_dict: bool = True,
        generator: Optional[torch.Generator] = None,
    ) -> Union[torch.Tensor, torch.Tensor]:
        x = sample
        posterior = self.encode(x).latent_dist
        if sample_posterior:
            z = posterior.sample(generator=generator)
        else:
            z = posterior.mode()
Aryan's avatar
Aryan committed
1390
        dec = self.decode(z, temb)
Aryan's avatar
Aryan committed
1391
        if not return_dict:
1392
            return (dec.sample,)
Aryan's avatar
Aryan committed
1393
        return dec