unet_glide.py 18.9 KB
Newer Older
anton-l's avatar
anton-l committed
1
import torch
anton-l's avatar
anton-l committed
2
3
4
import torch.nn as nn
import torch.nn.functional as F

Patrick von Platen's avatar
Patrick von Platen committed
5
6
from ..configuration_utils import ConfigMixin
from ..modeling_utils import ModelMixin
Patrick von Platen's avatar
Patrick von Platen committed
7
from .attention import AttentionBlock
8
from .embeddings import get_timestep_embedding
9
from .resnet import Downsample2D, ResnetBlock2D, Upsample2D
anton-l's avatar
anton-l committed
10

anton-l's avatar
anton-l committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

def convert_module_to_f16(l):
    """
    Convert primitive modules to float16.
    """
    if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
        l.weight.data = l.weight.data.half()
        if l.bias is not None:
            l.bias.data = l.bias.data.half()


def convert_module_to_f32(l):
    """
    Convert primitive modules to float32, undoing convert_module_to_f16().
    """
    if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
        l.weight.data = l.weight.data.float()
        if l.bias is not None:
            l.bias.data = l.bias.data.float()


def conv_nd(dims, *args, **kwargs):
    """
    Create a 1D, 2D, or 3D convolution module.
    """
    if dims == 1:
        return nn.Conv1d(*args, **kwargs)
    elif dims == 2:
        return nn.Conv2d(*args, **kwargs)
    elif dims == 3:
        return nn.Conv3d(*args, **kwargs)
    raise ValueError(f"unsupported dimensions: {dims}")


def linear(*args, **kwargs):
    """
    Create a linear module.
    """
    return nn.Linear(*args, **kwargs)


class GroupNorm32(nn.GroupNorm):
    def __init__(self, num_groups, num_channels, swish, eps=1e-5):
        super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps)
        self.swish = swish

    def forward(self, x):
        y = super().forward(x.float()).to(x.dtype)
        if self.swish == 1.0:
            y = F.silu(y)
        elif self.swish:
            y = y * F.sigmoid(y * float(self.swish))
        return y


def normalization(channels, swish=0.0):
    """
    Make a standard normalization layer, with an optional swish activation.

Patrick von Platen's avatar
Patrick von Platen committed
70
    :param channels: number of input channels. :return: an nn.Module for normalization.
anton-l's avatar
anton-l committed
71
72
73
74
75
76
77
78
79
80
81
82
83
    """
    return GroupNorm32(num_channels=channels, num_groups=32, swish=swish)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


84
class TimestepEmbedSequential(nn.Sequential):
anton-l's avatar
anton-l committed
85
    """
Patrick von Platen's avatar
Patrick von Platen committed
86
    A sequential module that passes timestep embeddings to the children that support it as an extra input.
anton-l's avatar
anton-l committed
87
88
89
90
    """

    def forward(self, x, emb, encoder_out=None):
        for layer in self:
91
            if isinstance(layer, ResnetBlock2D) or isinstance(layer, TimestepEmbedSequential):
anton-l's avatar
anton-l committed
92
93
94
95
96
97
98
99
                x = layer(x, emb)
            elif isinstance(layer, AttentionBlock):
                x = layer(x, encoder_out)
            else:
                x = layer(x)
        return x


Patrick von Platen's avatar
Patrick von Platen committed
100
class GlideUNetModel(ModelMixin, ConfigMixin):
anton-l's avatar
anton-l committed
101
102
103
    """
    The full UNet model with attention and timestep embedding.

Patrick von Platen's avatar
Patrick von Platen committed
104
105
    :param in_channels: channels in the input Tensor. :param model_channels: base channel count for the model. :param
    out_channels: channels in the output Tensor. :param num_res_blocks: number of residual blocks per downsample.
anton-l's avatar
anton-l committed
106
    :param attention_resolutions: a collection of downsample rates at which
Patrick von Platen's avatar
Patrick von Platen committed
107
108
109
110
        attention will take place. May be a set, list, or tuple. For example, if this contains 4, then at 4x
        downsampling, attention will be used.
    :param dropout: the dropout probability. :param channel_mult: channel multiplier for each level of the UNet. :param
    conv_resample: if True, use learned convolutions for upsampling and
anton-l's avatar
anton-l committed
111
        downsampling.
Patrick von Platen's avatar
Patrick von Platen committed
112
113
    :param dims: determines if the signal is 1D, 2D, or 3D. :param num_classes: if specified (as an int), then this
    model will be
anton-l's avatar
anton-l committed
114
        class-conditional with `num_classes` classes.
Patrick von Platen's avatar
Patrick von Platen committed
115
116
    :param use_checkpoint: use gradient checkpointing to reduce memory usage. :param num_heads: the number of attention
    heads in each attention layer. :param num_heads_channels: if specified, ignore num_heads and instead use
anton-l's avatar
anton-l committed
117
118
119
                               a fixed channel width per attention head.
    :param num_heads_upsample: works with num_heads to set a different number
                               of heads for upsampling. Deprecated.
Patrick von Platen's avatar
Patrick von Platen committed
120
121
    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. :param resblock_updown: use residual blocks
    for up/downsampling.
anton-l's avatar
anton-l committed
122
123
124
125
    """

    def __init__(
        self,
126
        in_channels=3,
anton-l's avatar
anton-l committed
127
        resolution=64,
128
129
130
131
        model_channels=192,
        out_channels=6,
        num_res_blocks=3,
        attention_resolutions=(2, 4, 8),
anton-l's avatar
anton-l committed
132
133
134
135
136
137
138
139
140
141
142
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
anton-l's avatar
anton-l committed
143
        transformer_dim=None,
anton-l's avatar
anton-l committed
144
145
146
147
148
149
150
    ):
        super().__init__()

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        self.in_channels = in_channels
anton-l's avatar
anton-l committed
151
        self.resolution = resolution
anton-l's avatar
anton-l committed
152
153
154
155
156
157
158
159
        self.model_channels = model_channels
        self.out_channels = out_channels
        self.num_res_blocks = num_res_blocks
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.use_checkpoint = use_checkpoint
anton-l's avatar
Style  
anton-l committed
160
        # self.dtype = torch.float16 if use_fp16 else torch.float32
anton-l's avatar
anton-l committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            linear(model_channels, time_embed_dim),
            nn.SiLU(),
            linear(time_embed_dim, time_embed_dim),
        )

        ch = input_ch = int(channel_mult[0] * model_channels)
        self.input_blocks = nn.ModuleList([TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))])
        self._feature_size = ch
        input_block_chans = [ch]
        ds = 1
        for level, mult in enumerate(channel_mult):
            for _ in range(num_res_blocks):
                layers = [
Patrick von Platen's avatar
Patrick von Platen committed
180
                    ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
181
182
183
184
185
186
                        in_channels=ch,
                        out_channels=mult * model_channels,
                        dropout=dropout,
                        temb_channels=time_embed_dim,
                        eps=1e-5,
                        non_linearity="silu",
Patrick von Platen's avatar
Patrick von Platen committed
187
                        time_embedding_norm="scale_shift" if use_scale_shift_norm else "default",
Patrick von Platen's avatar
Patrick von Platen committed
188
                        overwrite_for_glide=True,
anton-l's avatar
anton-l committed
189
190
191
192
193
194
195
196
197
198
                    )
                ]
                ch = int(mult * model_channels)
                if ds in attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads,
                            num_head_channels=num_head_channels,
anton-l's avatar
anton-l committed
199
                            encoder_channels=transformer_dim,
anton-l's avatar
anton-l committed
200
201
202
203
204
205
206
207
208
                        )
                    )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
Patrick von Platen's avatar
Patrick von Platen committed
209
                        ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
210
                            in_channels=ch,
anton-l's avatar
anton-l committed
211
                            out_channels=out_ch,
Patrick von Platen's avatar
Patrick von Platen committed
212
213
214
215
                            dropout=dropout,
                            temb_channels=time_embed_dim,
                            eps=1e-5,
                            non_linearity="silu",
Patrick von Platen's avatar
Patrick von Platen committed
216
                            time_embedding_norm="scale_shift" if use_scale_shift_norm else "default",
Patrick von Platen's avatar
Patrick von Platen committed
217
                            overwrite_for_glide=True,
Patrick von Platen's avatar
Patrick von Platen committed
218
                            down=True,
anton-l's avatar
anton-l committed
219
220
                        )
                        if resblock_updown
221
                        else Downsample2D(ch, use_conv=conv_resample, out_channels=out_ch, padding=1, name="op")
anton-l's avatar
anton-l committed
222
223
224
225
226
227
228
229
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        self.middle_block = TimestepEmbedSequential(
Patrick von Platen's avatar
Patrick von Platen committed
230
            ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
231
232
233
234
235
                in_channels=ch,
                dropout=dropout,
                temb_channels=time_embed_dim,
                eps=1e-5,
                non_linearity="silu",
Patrick von Platen's avatar
Patrick von Platen committed
236
                time_embedding_norm="scale_shift" if use_scale_shift_norm else "default",
Patrick von Platen's avatar
Patrick von Platen committed
237
                overwrite_for_glide=True,
anton-l's avatar
anton-l committed
238
239
240
241
242
243
            ),
            AttentionBlock(
                ch,
                use_checkpoint=use_checkpoint,
                num_heads=num_heads,
                num_head_channels=num_head_channels,
anton-l's avatar
anton-l committed
244
                encoder_channels=transformer_dim,
anton-l's avatar
anton-l committed
245
            ),
Patrick von Platen's avatar
Patrick von Platen committed
246
            ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
247
248
249
250
251
                in_channels=ch,
                dropout=dropout,
                temb_channels=time_embed_dim,
                eps=1e-5,
                non_linearity="silu",
Patrick von Platen's avatar
Patrick von Platen committed
252
                time_embedding_norm="scale_shift" if use_scale_shift_norm else "default",
Patrick von Platen's avatar
Patrick von Platen committed
253
                overwrite_for_glide=True,
Patrick von Platen's avatar
Patrick von Platen committed
254
            ),
anton-l's avatar
anton-l committed
255
256
257
258
259
260
261
262
        )
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(num_res_blocks + 1):
                ich = input_block_chans.pop()
                layers = [
Patrick von Platen's avatar
Patrick von Platen committed
263
                    ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
264
265
266
267
268
269
                        in_channels=ch + ich,
                        out_channels=model_channels * mult,
                        dropout=dropout,
                        temb_channels=time_embed_dim,
                        eps=1e-5,
                        non_linearity="silu",
Patrick von Platen's avatar
Patrick von Platen committed
270
                        time_embedding_norm="scale_shift" if use_scale_shift_norm else "default",
Patrick von Platen's avatar
Patrick von Platen committed
271
272
                        overwrite_for_glide=True,
                    ),
anton-l's avatar
anton-l committed
273
274
275
276
277
278
279
280
281
                ]
                ch = int(model_channels * mult)
                if ds in attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads_upsample,
                            num_head_channels=num_head_channels,
anton-l's avatar
anton-l committed
282
                            encoder_channels=transformer_dim,
anton-l's avatar
anton-l committed
283
284
285
286
287
                        )
                    )
                if level and i == num_res_blocks:
                    out_ch = ch
                    layers.append(
Patrick von Platen's avatar
Patrick von Platen committed
288
                        ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
289
                            in_channels=ch,
anton-l's avatar
anton-l committed
290
                            out_channels=out_ch,
Patrick von Platen's avatar
Patrick von Platen committed
291
292
293
294
                            dropout=dropout,
                            temb_channels=time_embed_dim,
                            eps=1e-5,
                            non_linearity="silu",
Patrick von Platen's avatar
Patrick von Platen committed
295
                            time_embedding_norm="scale_shift" if use_scale_shift_norm else "default",
Patrick von Platen's avatar
Patrick von Platen committed
296
                            overwrite_for_glide=True,
anton-l's avatar
anton-l committed
297
298
299
                            up=True,
                        )
                        if resblock_updown
300
                        else Upsample2D(ch, use_conv=conv_resample, out_channels=out_ch)
anton-l's avatar
anton-l committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
                    )
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch

        self.out = nn.Sequential(
            normalization(ch, swish=1.0),
            nn.Identity(),
            zero_module(conv_nd(dims, input_ch, out_channels, 3, padding=1)),
        )
        self.use_fp16 = use_fp16

    def convert_to_fp16(self):
        """
        Convert the torso of the model to float16.
        """
        self.input_blocks.apply(convert_module_to_f16)
        self.middle_block.apply(convert_module_to_f16)
        self.output_blocks.apply(convert_module_to_f16)

    def convert_to_fp32(self):
        """
        Convert the torso of the model to float32.
        """
        self.input_blocks.apply(convert_module_to_f32)
        self.middle_block.apply(convert_module_to_f32)
        self.output_blocks.apply(convert_module_to_f32)

329
    def forward(self, x, timesteps):
anton-l's avatar
anton-l committed
330
331
332
        """
        Apply the model to an input batch.

Patrick von Platen's avatar
Patrick von Platen committed
333
334
        :param x: an [N x C x ...] Tensor of inputs. :param timesteps: a 1-D batch of timesteps. :param y: an [N]
        Tensor of labels, if class-conditional. :return: an [N x C x ...] Tensor of outputs.
anton-l's avatar
anton-l committed
335
        """
anton-l's avatar
anton-l committed
336
337

        hs = []
338
339
340
        emb = self.time_embed(
            get_timestep_embedding(timesteps, self.model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
        )
anton-l's avatar
anton-l committed
341
342
343
344
345
346
347
348
349
350
351
352
353

        h = x.type(self.dtype)
        for module in self.input_blocks:
            h = module(h, emb)
            hs.append(h)
        h = self.middle_block(h, emb)
        for module in self.output_blocks:
            h = torch.cat([h, hs.pop()], dim=1)
            h = module(h, emb)
        h = h.type(x.dtype)
        return self.out(h)


Patrick von Platen's avatar
Patrick von Platen committed
354
class GlideTextToImageUNetModel(GlideUNetModel):
anton-l's avatar
anton-l committed
355
356
357
358
359
360
    """
    A UNetModel that performs super-resolution.

    Expects an extra kwarg `low_res` to condition on a low-resolution image.
    """

361
    def __init__(
Patrick von Platen's avatar
Patrick von Platen committed
362
363
        self,
        in_channels=3,
anton-l's avatar
anton-l committed
364
        resolution=64,
Patrick von Platen's avatar
Patrick von Platen committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
        model_channels=192,
        out_channels=6,
        num_res_blocks=3,
        attention_resolutions=(2, 4, 8),
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        transformer_dim=512,
381
382
383
    ):
        super().__init__(
            in_channels=in_channels,
anton-l's avatar
anton-l committed
384
            resolution=resolution,
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
Patrick von Platen's avatar
Patrick von Platen committed
400
            transformer_dim=transformer_dim,
401
        )
402
        self.register_to_config(
403
            in_channels=in_channels,
anton-l's avatar
anton-l committed
404
            resolution=resolution,
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
Patrick von Platen's avatar
Patrick von Platen committed
420
            transformer_dim=transformer_dim,
421
        )
anton-l's avatar
anton-l committed
422

423
        self.transformer_proj = nn.Linear(transformer_dim, self.model_channels * 4)
anton-l's avatar
anton-l committed
424
425

    def forward(self, x, timesteps, transformer_out=None):
anton-l's avatar
anton-l committed
426
        hs = []
427
428
429
        emb = self.time_embed(
            get_timestep_embedding(timesteps, self.model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
        )
anton-l's avatar
anton-l committed
430
431
432
433
434

        # project the last token
        transformer_proj = self.transformer_proj(transformer_out[:, -1])
        transformer_out = transformer_out.permute(0, 2, 1)  # NLC -> NCL

435
436
        emb = emb + transformer_proj.to(emb)

anton-l's avatar
anton-l committed
437
        h = x
anton-l's avatar
anton-l committed
438
        for module in self.input_blocks:
439
            h = module(h, emb, transformer_out)
anton-l's avatar
anton-l committed
440
            hs.append(h)
441
        h = self.middle_block(h, emb, transformer_out)
anton-l's avatar
anton-l committed
442
        for module in self.output_blocks:
anton-l's avatar
anton-l committed
443
444
            other = hs.pop()
            h = torch.cat([h, other], dim=1)
445
            h = module(h, emb, transformer_out)
anton-l's avatar
anton-l committed
446
        return self.out(h)
anton-l's avatar
anton-l committed
447
448


Patrick von Platen's avatar
Patrick von Platen committed
449
class GlideSuperResUNetModel(GlideUNetModel):
anton-l's avatar
anton-l committed
450
451
452
453
454
455
    """
    A UNetModel that performs super-resolution.

    Expects an extra kwarg `low_res` to condition on a low-resolution image.
    """

456
    def __init__(
Patrick von Platen's avatar
Patrick von Platen committed
457
458
        self,
        in_channels=3,
anton-l's avatar
anton-l committed
459
        resolution=256,
Patrick von Platen's avatar
Patrick von Platen committed
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
        model_channels=192,
        out_channels=6,
        num_res_blocks=3,
        attention_resolutions=(2, 4, 8),
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
475
476
477
    ):
        super().__init__(
            in_channels=in_channels,
anton-l's avatar
anton-l committed
478
            resolution=resolution,
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
        )
495
        self.register_to_config(
496
            in_channels=in_channels,
anton-l's avatar
anton-l committed
497
            resolution=resolution,
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
            model_channels=model_channels,
            out_channels=out_channels,
            num_res_blocks=num_res_blocks,
            attention_resolutions=attention_resolutions,
            dropout=dropout,
            channel_mult=channel_mult,
            conv_resample=conv_resample,
            dims=dims,
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
        )
anton-l's avatar
anton-l committed
514

515
    def forward(self, x, timesteps, low_res=None):
anton-l's avatar
anton-l committed
516
517
518
        _, _, new_height, new_width = x.shape
        upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear")
        x = torch.cat([x, upsampled], dim=1)
519
520

        hs = []
521
522
523
        emb = self.time_embed(
            get_timestep_embedding(timesteps, self.model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
        )
524
525
526
527
528
529
530
531
532
533

        h = x
        for module in self.input_blocks:
            h = module(h, emb)
            hs.append(h)
        h = self.middle_block(h, emb)
        for module in self.output_blocks:
            h = torch.cat([h, hs.pop()], dim=1)
            h = module(h, emb)

Patrick von Platen's avatar
Patrick von Platen committed
534
        return self.out(h)