pipeline_loading_utils.py 47.2 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import os
import re
import warnings
from pathlib import Path
20
from typing import Any, Callable, Dict, List, Optional, Union
21

Marc Sun's avatar
Marc Sun committed
22
import requests
23
import torch
Marc Sun's avatar
Marc Sun committed
24
25
from huggingface_hub import DDUFEntry, ModelCard, model_info, snapshot_download
from huggingface_hub.utils import OfflineModeIsEnabled, validate_hf_hub_args
26
from packaging import version
Marc Sun's avatar
Marc Sun committed
27
from requests.exceptions import HTTPError
28

29
from .. import __version__
30
from ..utils import (
31
32
33
    FLAX_WEIGHTS_NAME,
    ONNX_EXTERNAL_WEIGHTS_NAME,
    ONNX_WEIGHTS_NAME,
34
35
    SAFETENSORS_WEIGHTS_NAME,
    WEIGHTS_NAME,
36
    deprecate,
37
    get_class_from_dynamic_module,
38
    is_accelerate_available,
39
40
    is_peft_available,
    is_transformers_available,
Marc Sun's avatar
Marc Sun committed
41
    is_transformers_version,
42
43
44
    logging,
)
from ..utils.torch_utils import is_compiled_module
Marc Sun's avatar
Marc Sun committed
45
from .transformers_loading_utils import _load_tokenizer_from_dduf, _load_transformers_model_from_dduf
46
47
48
49


if is_transformers_available():
    import transformers
Marc Sun's avatar
Marc Sun committed
50
    from transformers import PreTrainedModel, PreTrainedTokenizerBase
51
52
53
    from transformers.utils import SAFE_WEIGHTS_NAME as TRANSFORMERS_SAFE_WEIGHTS_NAME
    from transformers.utils import WEIGHTS_NAME as TRANSFORMERS_WEIGHTS_NAME

54
55
56
    if is_transformers_version("<=", "4.56.2"):
        from transformers.utils import FLAX_WEIGHTS_NAME as TRANSFORMERS_FLAX_WEIGHTS_NAME

57
58
59
60
61
if is_accelerate_available():
    import accelerate
    from accelerate import dispatch_model
    from accelerate.hooks import remove_hook_from_module
    from accelerate.utils import compute_module_sizes, get_max_memory
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96


INDEX_FILE = "diffusion_pytorch_model.bin"
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py"
DUMMY_MODULES_FOLDER = "diffusers.utils"
TRANSFORMERS_DUMMY_MODULES_FOLDER = "transformers.utils"
CONNECTED_PIPES_KEYS = ["prior"]

logger = logging.get_logger(__name__)

LOADABLE_CLASSES = {
    "diffusers": {
        "ModelMixin": ["save_pretrained", "from_pretrained"],
        "SchedulerMixin": ["save_pretrained", "from_pretrained"],
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
        "OnnxRuntimeModel": ["save_pretrained", "from_pretrained"],
    },
    "transformers": {
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
        "FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
        "ProcessorMixin": ["save_pretrained", "from_pretrained"],
        "ImageProcessingMixin": ["save_pretrained", "from_pretrained"],
    },
    "onnxruntime.training": {
        "ORTModule": ["save_pretrained", "from_pretrained"],
    },
}

ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])


97
def is_safetensors_compatible(filenames, passed_components=None, folder_names=None, variant=None) -> bool:
98
99
    """
    Checking for safetensors compatibility:
100
101
    - The model is safetensors compatible only if there is a safetensors file for each model component present in
      filenames.
102
103
104
105
106
107

    Converting default pytorch serialized filenames to safetensors serialized filenames:
    - For models from the diffusers library, just replace the ".bin" extension with ".safetensors"
    - For models from the transformers library, the filename changes from "pytorch_model" to "model", and the ".bin"
      extension is replaced with ".safetensors"
    """
108
109
110
111
112
113
114
115
116
    weight_names = [
        WEIGHTS_NAME,
        SAFETENSORS_WEIGHTS_NAME,
        FLAX_WEIGHTS_NAME,
        ONNX_WEIGHTS_NAME,
        ONNX_EXTERNAL_WEIGHTS_NAME,
    ]

    if is_transformers_available():
117
118
119
        weight_names += [TRANSFORMERS_WEIGHTS_NAME, TRANSFORMERS_SAFE_WEIGHTS_NAME]
        if is_transformers_version("<=", "4.56.2"):
            weight_names += [TRANSFORMERS_FLAX_WEIGHTS_NAME]
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

    # model_pytorch, diffusion_model_pytorch, ...
    weight_prefixes = [w.split(".")[0] for w in weight_names]
    # .bin, .safetensors, ...
    weight_suffixs = [w.split(".")[-1] for w in weight_names]
    # -00001-of-00002
    transformers_index_format = r"\d{5}-of-\d{5}"
    # `diffusion_pytorch_model.bin` as well as `model-00001-of-00002.safetensors`
    variant_file_re = re.compile(
        rf"({'|'.join(weight_prefixes)})\.({variant}|{variant}-{transformers_index_format})\.({'|'.join(weight_suffixs)})$"
    )
    non_variant_file_re = re.compile(
        rf"({'|'.join(weight_prefixes)})(-{transformers_index_format})?\.({'|'.join(weight_suffixs)})$"
    )

135
    passed_components = passed_components or []
136
    if folder_names:
137
        filenames = {f for f in filenames if os.path.split(f)[0] in folder_names}
138

139
140
    # extract all components of the pipeline and their associated files
    components = {}
141
    for filename in filenames:
142
143
        if not len(filename.split("/")) == 2:
            continue
144

145
146
        component, component_filename = filename.split("/")
        if component in passed_components:
147
148
            continue

149
150
151
        components.setdefault(component, [])
        components[component].append(component_filename)

152
    # If there are no component folders check the main directory for safetensors files
153
    filtered_filenames = set()
154
    if not components:
155
156
        if variant is not None:
            filtered_filenames = filter_with_regex(filenames, variant_file_re)
157
158
159

        # If no variant filenames exist check if non-variant files are available
        if not filtered_filenames:
160
161
            filtered_filenames = filter_with_regex(filenames, non_variant_file_re)
        return any(".safetensors" in filename for filename in filtered_filenames)
162

163
164
165
166
    # iterate over all files of a component
    # check if safetensor files exist for that component
    for component, component_filenames in components.items():
        matches = []
167
168
        filtered_component_filenames = set()
        # if variant is provided check if the variant of the safetensors exists
169
170
        if variant is not None:
            filtered_component_filenames = filter_with_regex(component_filenames, variant_file_re)
171
172
173

        # if variant safetensor files do not exist check for non-variants
        if not filtered_component_filenames:
174
175
            filtered_component_filenames = filter_with_regex(component_filenames, non_variant_file_re)
        for component_filename in filtered_component_filenames:
176
177
178
179
180
181
            filename, extension = os.path.splitext(component_filename)

            match_exists = extension == ".safetensors"
            matches.append(match_exists)

        if not any(matches):
182
183
184
185
186
            return False

    return True


187
188
189
190
191
192
193
194
195
196
197
def filter_model_files(filenames):
    """Filter model repo files for just files/folders that contain model weights"""
    weight_names = [
        WEIGHTS_NAME,
        SAFETENSORS_WEIGHTS_NAME,
        FLAX_WEIGHTS_NAME,
        ONNX_WEIGHTS_NAME,
        ONNX_EXTERNAL_WEIGHTS_NAME,
    ]

    if is_transformers_available():
198
199
200
        weight_names += [TRANSFORMERS_WEIGHTS_NAME, TRANSFORMERS_SAFE_WEIGHTS_NAME]
        if is_transformers_version("<=", "4.56.2"):
            weight_names += [TRANSFORMERS_FLAX_WEIGHTS_NAME]
201
202
203
204
205
206

    allowed_extensions = [wn.split(".")[-1] for wn in weight_names]

    return [f for f in filenames if any(f.endswith(extension) for extension in allowed_extensions)]


207
208
209
210
def filter_with_regex(filenames, pattern_re):
    return {f for f in filenames if pattern_re.match(f.split("/")[-1]) is not None}


211
def variant_compatible_siblings(filenames, variant=None, ignore_patterns=None) -> Union[List[os.PathLike], str]:
212
213
214
215
216
217
218
219
220
    weight_names = [
        WEIGHTS_NAME,
        SAFETENSORS_WEIGHTS_NAME,
        FLAX_WEIGHTS_NAME,
        ONNX_WEIGHTS_NAME,
        ONNX_EXTERNAL_WEIGHTS_NAME,
    ]

    if is_transformers_available():
221
222
223
        weight_names += [TRANSFORMERS_WEIGHTS_NAME, TRANSFORMERS_SAFE_WEIGHTS_NAME]
        if is_transformers_version("<=", "4.56.2"):
            weight_names += [TRANSFORMERS_FLAX_WEIGHTS_NAME]
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

    # model_pytorch, diffusion_model_pytorch, ...
    weight_prefixes = [w.split(".")[0] for w in weight_names]
    # .bin, .safetensors, ...
    weight_suffixs = [w.split(".")[-1] for w in weight_names]
    # -00001-of-00002
    transformers_index_format = r"\d{5}-of-\d{5}"

    if variant is not None:
        # `diffusion_pytorch_model.fp16.bin` as well as `model.fp16-00001-of-00002.safetensors`
        variant_file_re = re.compile(
            rf"({'|'.join(weight_prefixes)})\.({variant}|{variant}-{transformers_index_format})\.({'|'.join(weight_suffixs)})$"
        )
        # `text_encoder/pytorch_model.bin.index.fp16.json`
        variant_index_re = re.compile(
            rf"({'|'.join(weight_prefixes)})\.({'|'.join(weight_suffixs)})\.index\.{variant}\.json$"
        )
241
242
243
244
        legacy_variant_file_re = re.compile(rf".*-{transformers_index_format}\.{variant}\.[a-z]+$")
        legacy_variant_index_re = re.compile(
            rf"({'|'.join(weight_prefixes)})\.({'|'.join(weight_suffixs)})\.{variant}\.index\.json$"
        )
245
246
247
248
249
250
251
252

    # `diffusion_pytorch_model.bin` as well as `model-00001-of-00002.safetensors`
    non_variant_file_re = re.compile(
        rf"({'|'.join(weight_prefixes)})(-{transformers_index_format})?\.({'|'.join(weight_suffixs)})$"
    )
    # `text_encoder/pytorch_model.bin.index.json`
    non_variant_index_re = re.compile(rf"({'|'.join(weight_prefixes)})\.({'|'.join(weight_suffixs)})\.index\.json")

253
254
255
256
257
258
259
260
261
262
263
264
265
266
    def filter_for_compatible_extensions(filenames, ignore_patterns=None):
        if not ignore_patterns:
            return filenames

        # ignore patterns uses glob style patterns e.g *.safetensors but we're only
        # interested in the extension name
        return {f for f in filenames if not any(f.endswith(pat.lstrip("*.")) for pat in ignore_patterns)}

    # Group files by component
    components = {}
    for filename in filenames:
        if not len(filename.split("/")) == 2:
            components.setdefault("", []).append(filename)
            continue
267

268
269
        component, _ = filename.split("/")
        components.setdefault(component, []).append(filename)
270

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    usable_filenames = set()
    variant_filenames = set()
    for component, component_filenames in components.items():
        component_filenames = filter_for_compatible_extensions(component_filenames, ignore_patterns=ignore_patterns)

        component_variants = set()
        component_legacy_variants = set()
        component_non_variants = set()
        if variant is not None:
            component_variants = filter_with_regex(component_filenames, variant_file_re)
            component_variant_index_files = filter_with_regex(component_filenames, variant_index_re)

            component_legacy_variants = filter_with_regex(component_filenames, legacy_variant_file_re)
            component_legacy_variant_index_files = filter_with_regex(component_filenames, legacy_variant_index_re)

        if component_variants or component_legacy_variants:
            variant_filenames.update(
                component_variants | component_variant_index_files
                if component_variants
                else component_legacy_variants | component_legacy_variant_index_files
            )
292
293

        else:
294
295
            component_non_variants = filter_with_regex(component_filenames, non_variant_file_re)
            component_variant_index_files = filter_with_regex(component_filenames, non_variant_index_re)
296

297
            usable_filenames.update(component_non_variants | component_variant_index_files)
298

299
    usable_filenames.update(variant_filenames)
300

301
302
303
    if len(variant_filenames) == 0 and variant is not None:
        error_message = f"You are trying to load model files of the `variant={variant}`, but no such modeling files are available. "
        raise ValueError(error_message)
304

305
306
307
308
309
310
311
    if len(variant_filenames) > 0 and usable_filenames != variant_filenames:
        logger.warning(
            f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n"
            f"[{', '.join(variant_filenames)}]\nLoaded non-{variant} filenames:\n"
            f"[{', '.join(usable_filenames - variant_filenames)}\nIf this behavior is not "
            f"expected, please check your folder structure."
        )
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

    return usable_filenames, variant_filenames


@validate_hf_hub_args
def warn_deprecated_model_variant(pretrained_model_name_or_path, token, variant, revision, model_filenames):
    info = model_info(
        pretrained_model_name_or_path,
        token=token,
        revision=None,
    )
    filenames = {sibling.rfilename for sibling in info.siblings}
    comp_model_filenames, _ = variant_compatible_siblings(filenames, variant=revision)
    comp_model_filenames = [".".join(f.split(".")[:1] + f.split(".")[2:]) for f in comp_model_filenames]

    if set(model_filenames).issubset(set(comp_model_filenames)):
        warnings.warn(
            f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` even though you can load it via `variant=`{revision}`. Loading model variants via `revision='{revision}'` is deprecated and will be removed in diffusers v1. Please use `variant='{revision}'` instead.",
            FutureWarning,
        )
    else:
        warnings.warn(
            f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have the required variant filenames in the 'main' branch. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {revision} files' so that the correct variant file can be added.",
            FutureWarning,
        )


def _unwrap_model(model):
    """Unwraps a model."""
    if is_compiled_module(model):
        model = model._orig_mod

    if is_peft_available():
        from peft import PeftModel

        if isinstance(model, PeftModel):
            model = model.base_model.model

    return model


def maybe_raise_or_warn(
    library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
):
    """Simple helper method to raise or warn in case incorrect module has been passed"""
    if not is_pipeline_module:
        library = importlib.import_module(library_name)
        class_obj = getattr(library, class_name)
        class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}

        expected_class_obj = None
        for class_name, class_candidate in class_candidates.items():
            if class_candidate is not None and issubclass(class_obj, class_candidate):
                expected_class_obj = class_candidate

        # Dynamo wraps the original model in a private class.
        # I didn't find a public API to get the original class.
        sub_model = passed_class_obj[name]
        unwrapped_sub_model = _unwrap_model(sub_model)
        model_cls = unwrapped_sub_model.__class__

        if not issubclass(model_cls, expected_class_obj):
374
            raise ValueError(f"{passed_class_obj[name]} is of type: {model_cls}, but should be {expected_class_obj}")
375
376
377
378
379
380
381
    else:
        logger.warning(
            f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
            " has the correct type"
        )


YiYi Xu's avatar
YiYi Xu committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# a simpler version of get_class_obj_and_candidates, it won't work with custom code
def simple_get_class_obj(library_name, class_name):
    from diffusers import pipelines

    is_pipeline_module = hasattr(pipelines, library_name)

    if is_pipeline_module:
        pipeline_module = getattr(pipelines, library_name)
        class_obj = getattr(pipeline_module, class_name)
    else:
        library = importlib.import_module(library_name)
        class_obj = getattr(library, class_name)

    return class_obj


398
399
400
401
def get_class_obj_and_candidates(
    library_name, class_name, importable_classes, pipelines, is_pipeline_module, component_name=None, cache_dir=None
):
    """Simple helper method to retrieve class object of module as well as potential parent class objects"""
402
    component_folder = os.path.join(cache_dir, component_name) if component_name and cache_dir else None
403
404
405
406
407

    if is_pipeline_module:
        pipeline_module = getattr(pipelines, library_name)

        class_obj = getattr(pipeline_module, class_name)
408
        class_candidates = dict.fromkeys(importable_classes.keys(), class_obj)
409
    elif component_folder and os.path.isfile(os.path.join(component_folder, library_name + ".py")):
410
411
412
413
        # load custom component
        class_obj = get_class_from_dynamic_module(
            component_folder, module_file=library_name + ".py", class_name=class_name
        )
414
        class_candidates = dict.fromkeys(importable_classes.keys(), class_obj)
415
416
417
418
419
420
421
422
423
424
    else:
        # else we just import it from the library.
        library = importlib.import_module(library_name)

        class_obj = getattr(library, class_name)
        class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}

    return class_obj, class_candidates


425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
def _get_custom_pipeline_class(
    custom_pipeline,
    repo_id=None,
    hub_revision=None,
    class_name=None,
    cache_dir=None,
    revision=None,
):
    if custom_pipeline.endswith(".py"):
        path = Path(custom_pipeline)
        # decompose into folder & file
        file_name = path.name
        custom_pipeline = path.parent.absolute()
    elif repo_id is not None:
        file_name = f"{custom_pipeline}.py"
        custom_pipeline = repo_id
    else:
        file_name = CUSTOM_PIPELINE_FILE_NAME

    if repo_id is not None and hub_revision is not None:
        # if we load the pipeline code from the Hub
        # make sure to overwrite the `revision`
        revision = hub_revision

    return get_class_from_dynamic_module(
        custom_pipeline,
        module_file=file_name,
        class_name=class_name,
        cache_dir=cache_dir,
        revision=revision,
    )


458
459
460
461
462
463
464
465
466
467
468
469
def _get_pipeline_class(
    class_obj,
    config=None,
    load_connected_pipeline=False,
    custom_pipeline=None,
    repo_id=None,
    hub_revision=None,
    class_name=None,
    cache_dir=None,
    revision=None,
):
    if custom_pipeline is not None:
470
        return _get_custom_pipeline_class(
471
            custom_pipeline,
472
473
            repo_id=repo_id,
            hub_revision=hub_revision,
474
475
476
477
478
            class_name=class_name,
            cache_dir=cache_dir,
            revision=revision,
        )

YiYi Xu's avatar
YiYi Xu committed
479
    if class_obj.__name__ != "DiffusionPipeline" and class_obj.__name__ != "ModularPipeline":
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
        return class_obj

    diffusers_module = importlib.import_module(class_obj.__module__.split(".")[0])
    class_name = class_name or config["_class_name"]
    if not class_name:
        raise ValueError(
            "The class name could not be found in the configuration file. Please make sure to pass the correct `class_name`."
        )

    class_name = class_name[4:] if class_name.startswith("Flax") else class_name

    pipeline_cls = getattr(diffusers_module, class_name)

    if load_connected_pipeline:
        from .auto_pipeline import _get_connected_pipeline

        connected_pipeline_cls = _get_connected_pipeline(pipeline_cls)
        if connected_pipeline_cls is not None:
            logger.info(
                f"Loading connected pipeline {connected_pipeline_cls.__name__} instead of {pipeline_cls.__name__} as specified via `load_connected_pipeline=True`"
            )
        else:
            logger.info(f"{pipeline_cls.__name__} has no connected pipeline class. Loading {pipeline_cls.__name__}.")

        pipeline_cls = connected_pipeline_cls or pipeline_cls

    return pipeline_cls


509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
def _load_empty_model(
    library_name: str,
    class_name: str,
    importable_classes: List[Any],
    pipelines: Any,
    is_pipeline_module: bool,
    name: str,
    torch_dtype: Union[str, torch.dtype],
    cached_folder: Union[str, os.PathLike],
    **kwargs,
):
    # retrieve class objects.
    class_obj, _ = get_class_obj_and_candidates(
        library_name,
        class_name,
        importable_classes,
        pipelines,
        is_pipeline_module,
        component_name=name,
        cache_dir=cached_folder,
    )

    if is_transformers_available():
        transformers_version = version.parse(version.parse(transformers.__version__).base_version)
    else:
        transformers_version = "N/A"

    # Determine library.
    is_transformers_model = (
        is_transformers_available()
        and issubclass(class_obj, PreTrainedModel)
        and transformers_version >= version.parse("4.20.0")
    )
    diffusers_module = importlib.import_module(__name__.split(".")[0])
    is_diffusers_model = issubclass(class_obj, diffusers_module.ModelMixin)

    model = None
    config_path = cached_folder
    user_agent = {
        "diffusers": __version__,
        "file_type": "model",
        "framework": "pytorch",
    }

    if is_diffusers_model:
        # Load config and then the model on meta.
        config, unused_kwargs, commit_hash = class_obj.load_config(
            os.path.join(config_path, name),
            cache_dir=cached_folder,
            return_unused_kwargs=True,
            return_commit_hash=True,
            force_download=kwargs.pop("force_download", False),
            proxies=kwargs.pop("proxies", None),
            local_files_only=kwargs.pop("local_files_only", False),
            token=kwargs.pop("token", None),
            revision=kwargs.pop("revision", None),
            subfolder=kwargs.pop("subfolder", None),
            user_agent=user_agent,
        )
        with accelerate.init_empty_weights():
            model = class_obj.from_config(config, **unused_kwargs)
    elif is_transformers_model:
        config_class = getattr(class_obj, "config_class", None)
        if config_class is None:
            raise ValueError("`config_class` cannot be None. Please double-check the model.")

        config = config_class.from_pretrained(
            cached_folder,
            subfolder=name,
            force_download=kwargs.pop("force_download", False),
            proxies=kwargs.pop("proxies", None),
            local_files_only=kwargs.pop("local_files_only", False),
            token=kwargs.pop("token", None),
            revision=kwargs.pop("revision", None),
            user_agent=user_agent,
        )
        with accelerate.init_empty_weights():
            model = class_obj(config)

    if model is not None:
        model = model.to(dtype=torch_dtype)
    return model


def _assign_components_to_devices(
    module_sizes: Dict[str, float], device_memory: Dict[str, float], device_mapping_strategy: str = "balanced"
):
    device_ids = list(device_memory.keys())
    device_cycle = device_ids + device_ids[::-1]
    device_memory = device_memory.copy()

    device_id_component_mapping = {}
    current_device_index = 0
    for component in module_sizes:
        device_id = device_cycle[current_device_index % len(device_cycle)]
        component_memory = module_sizes[component]
        curr_device_memory = device_memory[device_id]

        # If the GPU doesn't fit the current component offload to the CPU.
        if component_memory > curr_device_memory:
            device_id_component_mapping["cpu"] = [component]
        else:
            if device_id not in device_id_component_mapping:
                device_id_component_mapping[device_id] = [component]
            else:
                device_id_component_mapping[device_id].append(component)

            # Update the device memory.
            device_memory[device_id] -= component_memory
            current_device_index += 1

    return device_id_component_mapping


def _get_final_device_map(device_map, pipeline_class, passed_class_obj, init_dict, library, max_memory, **kwargs):
co63oc's avatar
co63oc committed
624
    # TODO: separate out different device_map methods when it gets to it.
625
626
    if device_map != "balanced":
        return device_map
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
    # To avoid circular import problem.
    from diffusers import pipelines

    torch_dtype = kwargs.get("torch_dtype", torch.float32)

    # Load each module in the pipeline on a meta device so that we can derive the device map.
    init_empty_modules = {}
    for name, (library_name, class_name) in init_dict.items():
        if class_name.startswith("Flax"):
            raise ValueError("Flax pipelines are not supported with `device_map`.")

        # Define all importable classes
        is_pipeline_module = hasattr(pipelines, library_name)
        importable_classes = ALL_IMPORTABLE_CLASSES
        loaded_sub_model = None

        # Use passed sub model or load class_name from library_name
        if name in passed_class_obj:
            # if the model is in a pipeline module, then we load it from the pipeline
            # check that passed_class_obj has correct parent class
            maybe_raise_or_warn(
                library_name,
                library,
                class_name,
                importable_classes,
                passed_class_obj,
                name,
                is_pipeline_module,
            )
            with accelerate.init_empty_weights():
                loaded_sub_model = passed_class_obj[name]

        else:
660
661
662
663
664
            sub_model_dtype = (
                torch_dtype.get(name, torch_dtype.get("default", torch.float32))
                if isinstance(torch_dtype, dict)
                else torch_dtype
            )
665
666
667
668
669
670
671
672
            loaded_sub_model = _load_empty_model(
                library_name=library_name,
                class_name=class_name,
                importable_classes=importable_classes,
                pipelines=pipelines,
                is_pipeline_module=is_pipeline_module,
                pipeline_class=pipeline_class,
                name=name,
673
                torch_dtype=sub_model_dtype,
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
                cached_folder=kwargs.get("cached_folder", None),
                force_download=kwargs.get("force_download", None),
                proxies=kwargs.get("proxies", None),
                local_files_only=kwargs.get("local_files_only", None),
                token=kwargs.get("token", None),
                revision=kwargs.get("revision", None),
            )

        if loaded_sub_model is not None:
            init_empty_modules[name] = loaded_sub_model

    # determine device map
    # Obtain a sorted dictionary for mapping the model-level components
    # to their sizes.
    module_sizes = {
689
690
691
692
693
694
        module_name: compute_module_sizes(
            module,
            dtype=torch_dtype.get(module_name, torch_dtype.get("default", torch.float32))
            if isinstance(torch_dtype, dict)
            else torch_dtype,
        )[""]
695
696
697
698
699
700
701
702
703
704
705
706
        for module_name, module in init_empty_modules.items()
        if isinstance(module, torch.nn.Module)
    }
    module_sizes = dict(sorted(module_sizes.items(), key=lambda item: item[1], reverse=True))

    # Obtain maximum memory available per device (GPUs only).
    max_memory = get_max_memory(max_memory)
    max_memory = dict(sorted(max_memory.items(), key=lambda item: item[1], reverse=True))
    max_memory = {k: v for k, v in max_memory.items() if k != "cpu"}

    # Obtain a dictionary mapping the model-level components to the available
    # devices based on the maximum memory and the model sizes.
707
708
709
710
711
    final_device_map = None
    if len(max_memory) > 0:
        device_id_component_mapping = _assign_components_to_devices(
            module_sizes, max_memory, device_mapping_strategy=device_map
        )
712

713
714
715
716
717
        # Obtain the final device map, e.g., `{"unet": 0, "text_encoder": 1, "vae": 1, ...}`
        final_device_map = {}
        for device_id, components in device_id_component_mapping.items():
            for component in components:
                final_device_map[component] = device_id
718
719
720
721

    return final_device_map


722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
def load_sub_model(
    library_name: str,
    class_name: str,
    importable_classes: List[Any],
    pipelines: Any,
    is_pipeline_module: bool,
    pipeline_class: Any,
    torch_dtype: torch.dtype,
    provider: Any,
    sess_options: Any,
    device_map: Optional[Union[Dict[str, torch.device], str]],
    max_memory: Optional[Dict[Union[int, str], Union[int, str]]],
    offload_folder: Optional[Union[str, os.PathLike]],
    offload_state_dict: bool,
    model_variants: Dict[str, str],
    name: str,
    from_flax: bool,
    variant: str,
    low_cpu_mem_usage: bool,
    cached_folder: Union[str, os.PathLike],
742
    use_safetensors: bool,
Marc Sun's avatar
Marc Sun committed
743
    dduf_entries: Optional[Dict[str, DDUFEntry]],
744
    provider_options: Any,
745
    quantization_config: Optional[Any] = None,
746
747
):
    """Helper method to load the module `name` from `library_name` and `class_name`"""
748
    from ..quantizers import PipelineQuantizationConfig
749

750
    # retrieve class candidates
751

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
    class_obj, class_candidates = get_class_obj_and_candidates(
        library_name,
        class_name,
        importable_classes,
        pipelines,
        is_pipeline_module,
        component_name=name,
        cache_dir=cached_folder,
    )

    load_method_name = None
    # retrieve load method name
    for class_name, class_candidate in class_candidates.items():
        if class_candidate is not None and issubclass(class_obj, class_candidate):
            load_method_name = importable_classes[class_name][1]

    # if load method name is None, then we have a dummy module -> raise Error
    if load_method_name is None:
        none_module = class_obj.__module__
        is_dummy_path = none_module.startswith(DUMMY_MODULES_FOLDER) or none_module.startswith(
            TRANSFORMERS_DUMMY_MODULES_FOLDER
        )
        if is_dummy_path and "dummy" in none_module:
            # call class_obj for nice error message of missing requirements
            class_obj()

        raise ValueError(
            f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have"
            f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}."
        )

Marc Sun's avatar
Marc Sun committed
783
    load_method = _get_load_method(class_obj, load_method_name, is_dduf=dduf_entries is not None)
784
785
786
787
788
789
790
791
792

    # add kwargs to loading method
    diffusers_module = importlib.import_module(__name__.split(".")[0])
    loading_kwargs = {}
    if issubclass(class_obj, torch.nn.Module):
        loading_kwargs["torch_dtype"] = torch_dtype
    if issubclass(class_obj, diffusers_module.OnnxRuntimeModel):
        loading_kwargs["provider"] = provider
        loading_kwargs["sess_options"] = sess_options
793
        loading_kwargs["provider_options"] = provider_options
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816

    is_diffusers_model = issubclass(class_obj, diffusers_module.ModelMixin)

    if is_transformers_available():
        transformers_version = version.parse(version.parse(transformers.__version__).base_version)
    else:
        transformers_version = "N/A"

    is_transformers_model = (
        is_transformers_available()
        and issubclass(class_obj, PreTrainedModel)
        and transformers_version >= version.parse("4.20.0")
    )

    # When loading a transformers model, if the device_map is None, the weights will be initialized as opposed to diffusers.
    # To make default loading faster we set the `low_cpu_mem_usage=low_cpu_mem_usage` flag which is `True` by default.
    # This makes sure that the weights won't be initialized which significantly speeds up loading.
    if is_diffusers_model or is_transformers_model:
        loading_kwargs["device_map"] = device_map
        loading_kwargs["max_memory"] = max_memory
        loading_kwargs["offload_folder"] = offload_folder
        loading_kwargs["offload_state_dict"] = offload_state_dict
        loading_kwargs["variant"] = model_variants.pop(name, None)
817
        loading_kwargs["use_safetensors"] = use_safetensors
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

        if from_flax:
            loading_kwargs["from_flax"] = True

        # the following can be deleted once the minimum required `transformers` version
        # is higher than 4.27
        if (
            is_transformers_model
            and loading_kwargs["variant"] is not None
            and transformers_version < version.parse("4.27.0")
        ):
            raise ImportError(
                f"When passing `variant='{variant}'`, please make sure to upgrade your `transformers` version to at least 4.27.0.dev0"
            )
        elif is_transformers_model and loading_kwargs["variant"] is None:
            loading_kwargs.pop("variant")

        # if `from_flax` and model is transformer model, can currently not load with `low_cpu_mem_usage`
        if not (from_flax and is_transformers_model):
            loading_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
        else:
            loading_kwargs["low_cpu_mem_usage"] = False

841
842
843
844
845
846
847
848
849
850
851
    if (
        quantization_config is not None
        and isinstance(quantization_config, PipelineQuantizationConfig)
        and issubclass(class_obj, torch.nn.Module)
    ):
        model_quant_config = quantization_config._resolve_quant_config(
            is_diffusers=is_diffusers_model, module_name=name
        )
        if model_quant_config is not None:
            loading_kwargs["quantization_config"] = model_quant_config

852
    # check if the module is in a subdirectory
Marc Sun's avatar
Marc Sun committed
853
854
855
856
    if dduf_entries:
        loading_kwargs["dduf_entries"] = dduf_entries
        loaded_sub_model = load_method(name, **loading_kwargs)
    elif os.path.isdir(os.path.join(cached_folder, name)):
857
858
859
860
861
        loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
    else:
        # else load from the root directory
        loaded_sub_model = load_method(cached_folder, **loading_kwargs)

862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
    if isinstance(loaded_sub_model, torch.nn.Module) and isinstance(device_map, dict):
        # remove hooks
        remove_hook_from_module(loaded_sub_model, recurse=True)
        needs_offloading_to_cpu = device_map[""] == "cpu"

        if needs_offloading_to_cpu:
            dispatch_model(
                loaded_sub_model,
                state_dict=loaded_sub_model.state_dict(),
                device_map=device_map,
                force_hooks=True,
                main_device=0,
            )
        else:
            dispatch_model(loaded_sub_model, device_map=device_map, force_hooks=True)

878
879
880
    return loaded_sub_model


Marc Sun's avatar
Marc Sun committed
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
def _get_load_method(class_obj: object, load_method_name: str, is_dduf: bool) -> Callable:
    """
    Return the method to load the sub model.

    In practice, this method will return the `"from_pretrained"` (or `load_method_name`) method of the class object
    except if loading from a DDUF checkpoint. In that case, transformers models and tokenizers have a specific loading
    method that we need to use.
    """
    if is_dduf:
        if issubclass(class_obj, PreTrainedTokenizerBase):
            return lambda *args, **kwargs: _load_tokenizer_from_dduf(class_obj, *args, **kwargs)
        if issubclass(class_obj, PreTrainedModel):
            return lambda *args, **kwargs: _load_transformers_model_from_dduf(class_obj, *args, **kwargs)
    return getattr(class_obj, load_method_name)


897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
def _fetch_class_library_tuple(module):
    # import it here to avoid circular import
    diffusers_module = importlib.import_module(__name__.split(".")[0])
    pipelines = getattr(diffusers_module, "pipelines")

    # register the config from the original module, not the dynamo compiled one
    not_compiled_module = _unwrap_model(module)
    library = not_compiled_module.__module__.split(".")[0]

    # check if the module is a pipeline module
    module_path_items = not_compiled_module.__module__.split(".")
    pipeline_dir = module_path_items[-2] if len(module_path_items) > 2 else None

    path = not_compiled_module.__module__.split(".")
    is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)

    # if library is not in LOADABLE_CLASSES, then it is a custom module.
    # Or if it's a pipeline module, then the module is inside the pipeline
    # folder so we set the library to module name.
    if is_pipeline_module:
        library = pipeline_dir
    elif library not in LOADABLE_CLASSES:
        library = not_compiled_module.__module__

    # retrieve class_name
YiYi Xu's avatar
YiYi Xu committed
922
923
924
925
    if isinstance(not_compiled_module, type):
        class_name = not_compiled_module.__name__
    else:
        class_name = not_compiled_module.__class__.__name__
926
927

    return (library, class_name)
928
929
930
931
932


def _identify_model_variants(folder: str, variant: str, config: dict) -> dict:
    model_variants = {}
    if variant is not None:
YiYi Xu's avatar
YiYi Xu committed
933
934
935
        for sub_folder in os.listdir(folder):
            folder_path = os.path.join(folder, sub_folder)
            is_folder = os.path.isdir(folder_path) and sub_folder in config
936
937
            variant_exists = is_folder and any(p.split(".")[1].startswith(variant) for p in os.listdir(folder_path))
            if variant_exists:
YiYi Xu's avatar
YiYi Xu committed
938
                model_variants[sub_folder] = variant
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
    return model_variants


def _resolve_custom_pipeline_and_cls(folder, config, custom_pipeline):
    custom_class_name = None
    if os.path.isfile(os.path.join(folder, f"{custom_pipeline}.py")):
        custom_pipeline = os.path.join(folder, f"{custom_pipeline}.py")
    elif isinstance(config["_class_name"], (list, tuple)) and os.path.isfile(
        os.path.join(folder, f"{config['_class_name'][0]}.py")
    ):
        custom_pipeline = os.path.join(folder, f"{config['_class_name'][0]}.py")
        custom_class_name = config["_class_name"][1]

    return custom_pipeline, custom_class_name


def _maybe_raise_warning_for_inpainting(pipeline_class, pretrained_model_name_or_path: str, config: dict):
    if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse(
        version.parse(config["_diffusers_version"]).base_version
    ) <= version.parse("0.5.1"):
        from diffusers import StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy

        pipeline_class = StableDiffusionInpaintPipelineLegacy

        deprecation_message = (
            "You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
            f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
            " better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
967
            " checkpoint: https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting instead or adapting your"
968
            f" checkpoint {pretrained_model_name_or_path} to the format of"
969
            " https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting. Note that we do not actively maintain"
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
            " the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
        )
        deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)


def _update_init_kwargs_with_connected_pipeline(
    init_kwargs: dict, passed_pipe_kwargs: dict, passed_class_objs: dict, folder: str, **pipeline_loading_kwargs
) -> dict:
    from .pipeline_utils import DiffusionPipeline

    modelcard = ModelCard.load(os.path.join(folder, "README.md"))
    connected_pipes = {prefix: getattr(modelcard.data, prefix, [None])[0] for prefix in CONNECTED_PIPES_KEYS}

    # We don't scheduler argument to match the existing logic:
    # https://github.com/huggingface/diffusers/blob/867e0c919e1aa7ef8b03c8eb1460f4f875a683ae/src/diffusers/pipelines/pipeline_utils.py#L906C13-L925C14
    pipeline_loading_kwargs_cp = pipeline_loading_kwargs.copy()
    if pipeline_loading_kwargs_cp is not None and len(pipeline_loading_kwargs_cp) >= 1:
        for k in pipeline_loading_kwargs:
            if "scheduler" in k:
                _ = pipeline_loading_kwargs_cp.pop(k)

    def get_connected_passed_kwargs(prefix):
        connected_passed_class_obj = {
            k.replace(f"{prefix}_", ""): w for k, w in passed_class_objs.items() if k.split("_")[0] == prefix
        }
        connected_passed_pipe_kwargs = {
            k.replace(f"{prefix}_", ""): w for k, w in passed_pipe_kwargs.items() if k.split("_")[0] == prefix
        }

        connected_passed_kwargs = {**connected_passed_class_obj, **connected_passed_pipe_kwargs}
        return connected_passed_kwargs

    connected_pipes = {
        prefix: DiffusionPipeline.from_pretrained(
            repo_id, **pipeline_loading_kwargs_cp, **get_connected_passed_kwargs(prefix)
        )
        for prefix, repo_id in connected_pipes.items()
        if repo_id is not None
    }

    for prefix, connected_pipe in connected_pipes.items():
        # add connected pipes to `init_kwargs` with <prefix>_<component_name>, e.g. "prior_text_encoder"
        init_kwargs.update(
            {"_".join([prefix, name]): component for name, component in connected_pipe.components.items()}
        )

    return init_kwargs
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069


def _get_custom_components_and_folders(
    pretrained_model_name: str,
    config_dict: Dict[str, Any],
    filenames: Optional[List[str]] = None,
    variant_filenames: Optional[List[str]] = None,
    variant: Optional[str] = None,
):
    config_dict = config_dict.copy()

    # retrieve all folder_names that contain relevant files
    folder_names = [k for k, v in config_dict.items() if isinstance(v, list) and k != "_class_name"]

    diffusers_module = importlib.import_module(__name__.split(".")[0])
    pipelines = getattr(diffusers_module, "pipelines")

    # optionally create a custom component <> custom file mapping
    custom_components = {}
    for component in folder_names:
        module_candidate = config_dict[component][0]

        if module_candidate is None or not isinstance(module_candidate, str):
            continue

        # We compute candidate file path on the Hub. Do not use `os.path.join`.
        candidate_file = f"{component}/{module_candidate}.py"

        if candidate_file in filenames:
            custom_components[component] = module_candidate
        elif module_candidate not in LOADABLE_CLASSES and not hasattr(pipelines, module_candidate):
            raise ValueError(
                f"{candidate_file} as defined in `model_index.json` does not exist in {pretrained_model_name} and is not a module in 'diffusers/pipelines'."
            )

    return custom_components, folder_names


def _get_ignore_patterns(
    passed_components,
    model_folder_names: List[str],
    model_filenames: List[str],
    use_safetensors: bool,
    from_flax: bool,
    allow_pickle: bool,
    use_onnx: bool,
    is_onnx: bool,
    variant: Optional[str] = None,
) -> List[str]:
    if (
        use_safetensors
        and not allow_pickle
        and not is_safetensors_compatible(
1070
            model_filenames, passed_components=passed_components, folder_names=model_folder_names, variant=variant
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
        )
    ):
        raise EnvironmentError(
            f"Could not find the necessary `safetensors` weights in {model_filenames} (variant={variant})"
        )

    if from_flax:
        ignore_patterns = ["*.bin", "*.safetensors", "*.onnx", "*.pb"]

    elif use_safetensors and is_safetensors_compatible(
1081
        model_filenames, passed_components=passed_components, folder_names=model_folder_names, variant=variant
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
    ):
        ignore_patterns = ["*.bin", "*.msgpack"]

        use_onnx = use_onnx if use_onnx is not None else is_onnx
        if not use_onnx:
            ignore_patterns += ["*.onnx", "*.pb"]

    else:
        ignore_patterns = ["*.safetensors", "*.msgpack"]

        use_onnx = use_onnx if use_onnx is not None else is_onnx
        if not use_onnx:
            ignore_patterns += ["*.onnx", "*.pb"]

    return ignore_patterns
Marc Sun's avatar
Marc Sun committed
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163


def _download_dduf_file(
    pretrained_model_name: str,
    dduf_file: str,
    pipeline_class_name: str,
    cache_dir: str,
    proxies: str,
    local_files_only: bool,
    token: str,
    revision: str,
):
    model_info_call_error = None
    if not local_files_only:
        try:
            info = model_info(pretrained_model_name, token=token, revision=revision)
        except (HTTPError, OfflineModeIsEnabled, requests.ConnectionError) as e:
            logger.warning(f"Couldn't connect to the Hub: {e}.\nWill try to load from local cache.")
            local_files_only = True
            model_info_call_error = e  # save error to reraise it if model is not cached locally

    if (
        not local_files_only
        and dduf_file is not None
        and dduf_file not in (sibling.rfilename for sibling in info.siblings)
    ):
        raise ValueError(f"Requested {dduf_file} file is not available in {pretrained_model_name}.")

    try:
        user_agent = {"pipeline_class": pipeline_class_name, "dduf": True}
        cached_folder = snapshot_download(
            pretrained_model_name,
            cache_dir=cache_dir,
            proxies=proxies,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
            allow_patterns=[dduf_file],
            user_agent=user_agent,
        )
        return cached_folder
    except FileNotFoundError:
        # Means we tried to load pipeline with `local_files_only=True` but the files have not been found in local cache.
        # This can happen in two cases:
        # 1. If the user passed `local_files_only=True`                    => we raise the error directly
        # 2. If we forced `local_files_only=True` when `model_info` failed => we raise the initial error
        if model_info_call_error is None:
            # 1. user passed `local_files_only=True`
            raise
        else:
            # 2. we forced `local_files_only=True` when `model_info` failed
            raise EnvironmentError(
                f"Cannot load model {pretrained_model_name}: model is not cached locally and an error occurred"
                " while trying to fetch metadata from the Hub. Please check out the root cause in the stacktrace"
                " above."
            ) from model_info_call_error


def _maybe_raise_error_for_incorrect_transformers(config_dict):
    has_transformers_component = False
    for k in config_dict:
        if isinstance(config_dict[k], list):
            has_transformers_component = config_dict[k][0] == "transformers"
            if has_transformers_component:
                break
    if has_transformers_component and not is_transformers_version(">", "4.47.1"):
        raise ValueError("Please upgrade your `transformers` installation to the latest version to use DDUF.")
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186


def _maybe_warn_for_wrong_component_in_quant_config(pipe_init_dict, quant_config):
    if quant_config is None:
        return

    actual_pipe_components = set(pipe_init_dict.keys())
    missing = ""
    quant_components = None
    if getattr(quant_config, "components_to_quantize", None) is not None:
        quant_components = set(quant_config.components_to_quantize)
    elif getattr(quant_config, "quant_mapping", None) is not None and isinstance(quant_config.quant_mapping, dict):
        quant_components = set(quant_config.quant_mapping.keys())

    if quant_components and not quant_components.issubset(actual_pipe_components):
        missing = quant_components - actual_pipe_components

    if missing:
        logger.warning(
            f"The following components in the quantization config {missing} will be ignored "
            "as they do not belong to the underlying pipeline. Acceptable values for the pipeline "
            f"components are: {', '.join(actual_pipe_components)}."
        )