pipeline_loading_utils.py 44.9 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import os
import re
import warnings
from pathlib import Path
20
from typing import Any, Callable, Dict, List, Optional, Union
21

Marc Sun's avatar
Marc Sun committed
22
import requests
23
import torch
Marc Sun's avatar
Marc Sun committed
24
25
from huggingface_hub import DDUFEntry, ModelCard, model_info, snapshot_download
from huggingface_hub.utils import OfflineModeIsEnabled, validate_hf_hub_args
26
from packaging import version
Marc Sun's avatar
Marc Sun committed
27
from requests.exceptions import HTTPError
28

29
from .. import __version__
30
from ..utils import (
31
32
33
    FLAX_WEIGHTS_NAME,
    ONNX_EXTERNAL_WEIGHTS_NAME,
    ONNX_WEIGHTS_NAME,
34
35
    SAFETENSORS_WEIGHTS_NAME,
    WEIGHTS_NAME,
36
    deprecate,
37
    get_class_from_dynamic_module,
38
    is_accelerate_available,
39
40
    is_peft_available,
    is_transformers_available,
Marc Sun's avatar
Marc Sun committed
41
    is_transformers_version,
42
43
44
    logging,
)
from ..utils.torch_utils import is_compiled_module
Marc Sun's avatar
Marc Sun committed
45
from .transformers_loading_utils import _load_tokenizer_from_dduf, _load_transformers_model_from_dduf
46
47
48
49


if is_transformers_available():
    import transformers
Marc Sun's avatar
Marc Sun committed
50
    from transformers import PreTrainedModel, PreTrainedTokenizerBase
51
52
53
54
    from transformers.utils import FLAX_WEIGHTS_NAME as TRANSFORMERS_FLAX_WEIGHTS_NAME
    from transformers.utils import SAFE_WEIGHTS_NAME as TRANSFORMERS_SAFE_WEIGHTS_NAME
    from transformers.utils import WEIGHTS_NAME as TRANSFORMERS_WEIGHTS_NAME

55
56
57
58
59
if is_accelerate_available():
    import accelerate
    from accelerate import dispatch_model
    from accelerate.hooks import remove_hook_from_module
    from accelerate.utils import compute_module_sizes, get_max_memory
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94


INDEX_FILE = "diffusion_pytorch_model.bin"
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py"
DUMMY_MODULES_FOLDER = "diffusers.utils"
TRANSFORMERS_DUMMY_MODULES_FOLDER = "transformers.utils"
CONNECTED_PIPES_KEYS = ["prior"]

logger = logging.get_logger(__name__)

LOADABLE_CLASSES = {
    "diffusers": {
        "ModelMixin": ["save_pretrained", "from_pretrained"],
        "SchedulerMixin": ["save_pretrained", "from_pretrained"],
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
        "OnnxRuntimeModel": ["save_pretrained", "from_pretrained"],
    },
    "transformers": {
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
        "FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
        "ProcessorMixin": ["save_pretrained", "from_pretrained"],
        "ImageProcessingMixin": ["save_pretrained", "from_pretrained"],
    },
    "onnxruntime.training": {
        "ORTModule": ["save_pretrained", "from_pretrained"],
    },
}

ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])


95
def is_safetensors_compatible(filenames, passed_components=None, folder_names=None, variant=None) -> bool:
96
97
    """
    Checking for safetensors compatibility:
98
99
    - The model is safetensors compatible only if there is a safetensors file for each model component present in
      filenames.
100
101
102
103
104
105

    Converting default pytorch serialized filenames to safetensors serialized filenames:
    - For models from the diffusers library, just replace the ".bin" extension with ".safetensors"
    - For models from the transformers library, the filename changes from "pytorch_model" to "model", and the ".bin"
      extension is replaced with ".safetensors"
    """
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    weight_names = [
        WEIGHTS_NAME,
        SAFETENSORS_WEIGHTS_NAME,
        FLAX_WEIGHTS_NAME,
        ONNX_WEIGHTS_NAME,
        ONNX_EXTERNAL_WEIGHTS_NAME,
    ]

    if is_transformers_available():
        weight_names += [TRANSFORMERS_WEIGHTS_NAME, TRANSFORMERS_SAFE_WEIGHTS_NAME, TRANSFORMERS_FLAX_WEIGHTS_NAME]

    # model_pytorch, diffusion_model_pytorch, ...
    weight_prefixes = [w.split(".")[0] for w in weight_names]
    # .bin, .safetensors, ...
    weight_suffixs = [w.split(".")[-1] for w in weight_names]
    # -00001-of-00002
    transformers_index_format = r"\d{5}-of-\d{5}"
    # `diffusion_pytorch_model.bin` as well as `model-00001-of-00002.safetensors`
    variant_file_re = re.compile(
        rf"({'|'.join(weight_prefixes)})\.({variant}|{variant}-{transformers_index_format})\.({'|'.join(weight_suffixs)})$"
    )
    non_variant_file_re = re.compile(
        rf"({'|'.join(weight_prefixes)})(-{transformers_index_format})?\.({'|'.join(weight_suffixs)})$"
    )

131
    passed_components = passed_components or []
132
    if folder_names:
133
        filenames = {f for f in filenames if os.path.split(f)[0] in folder_names}
134

135
136
    # extract all components of the pipeline and their associated files
    components = {}
137
    for filename in filenames:
138
139
        if not len(filename.split("/")) == 2:
            continue
140

141
142
        component, component_filename = filename.split("/")
        if component in passed_components:
143
144
            continue

145
146
147
        components.setdefault(component, [])
        components[component].append(component_filename)

148
149
    # If there are no component folders check the main directory for safetensors files
    if not components:
150
151
152
153
154
        if variant is not None:
            filtered_filenames = filter_with_regex(filenames, variant_file_re)
        else:
            filtered_filenames = filter_with_regex(filenames, non_variant_file_re)
        return any(".safetensors" in filename for filename in filtered_filenames)
155

156
157
158
159
160
    # iterate over all files of a component
    # check if safetensor files exist for that component
    # if variant is provided check if the variant of the safetensors exists
    for component, component_filenames in components.items():
        matches = []
161
162
163
164
165
        if variant is not None:
            filtered_component_filenames = filter_with_regex(component_filenames, variant_file_re)
        else:
            filtered_component_filenames = filter_with_regex(component_filenames, non_variant_file_re)
        for component_filename in filtered_component_filenames:
166
167
168
169
170
171
            filename, extension = os.path.splitext(component_filename)

            match_exists = extension == ".safetensors"
            matches.append(match_exists)

        if not any(matches):
172
173
174
175
176
            return False

    return True


177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
def filter_model_files(filenames):
    """Filter model repo files for just files/folders that contain model weights"""
    weight_names = [
        WEIGHTS_NAME,
        SAFETENSORS_WEIGHTS_NAME,
        FLAX_WEIGHTS_NAME,
        ONNX_WEIGHTS_NAME,
        ONNX_EXTERNAL_WEIGHTS_NAME,
    ]

    if is_transformers_available():
        weight_names += [TRANSFORMERS_WEIGHTS_NAME, TRANSFORMERS_SAFE_WEIGHTS_NAME, TRANSFORMERS_FLAX_WEIGHTS_NAME]

    allowed_extensions = [wn.split(".")[-1] for wn in weight_names]

    return [f for f in filenames if any(f.endswith(extension) for extension in allowed_extensions)]


195
196
197
198
def filter_with_regex(filenames, pattern_re):
    return {f for f in filenames if pattern_re.match(f.split("/")[-1]) is not None}


199
def variant_compatible_siblings(filenames, variant=None, ignore_patterns=None) -> Union[List[os.PathLike], str]:
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    weight_names = [
        WEIGHTS_NAME,
        SAFETENSORS_WEIGHTS_NAME,
        FLAX_WEIGHTS_NAME,
        ONNX_WEIGHTS_NAME,
        ONNX_EXTERNAL_WEIGHTS_NAME,
    ]

    if is_transformers_available():
        weight_names += [TRANSFORMERS_WEIGHTS_NAME, TRANSFORMERS_SAFE_WEIGHTS_NAME, TRANSFORMERS_FLAX_WEIGHTS_NAME]

    # model_pytorch, diffusion_model_pytorch, ...
    weight_prefixes = [w.split(".")[0] for w in weight_names]
    # .bin, .safetensors, ...
    weight_suffixs = [w.split(".")[-1] for w in weight_names]
    # -00001-of-00002
    transformers_index_format = r"\d{5}-of-\d{5}"

    if variant is not None:
        # `diffusion_pytorch_model.fp16.bin` as well as `model.fp16-00001-of-00002.safetensors`
        variant_file_re = re.compile(
            rf"({'|'.join(weight_prefixes)})\.({variant}|{variant}-{transformers_index_format})\.({'|'.join(weight_suffixs)})$"
        )
        # `text_encoder/pytorch_model.bin.index.fp16.json`
        variant_index_re = re.compile(
            rf"({'|'.join(weight_prefixes)})\.({'|'.join(weight_suffixs)})\.index\.{variant}\.json$"
        )
227
228
229
230
        legacy_variant_file_re = re.compile(rf".*-{transformers_index_format}\.{variant}\.[a-z]+$")
        legacy_variant_index_re = re.compile(
            rf"({'|'.join(weight_prefixes)})\.({'|'.join(weight_suffixs)})\.{variant}\.index\.json$"
        )
231
232
233
234
235
236
237
238

    # `diffusion_pytorch_model.bin` as well as `model-00001-of-00002.safetensors`
    non_variant_file_re = re.compile(
        rf"({'|'.join(weight_prefixes)})(-{transformers_index_format})?\.({'|'.join(weight_suffixs)})$"
    )
    # `text_encoder/pytorch_model.bin.index.json`
    non_variant_index_re = re.compile(rf"({'|'.join(weight_prefixes)})\.({'|'.join(weight_suffixs)})\.index\.json")

239
240
241
242
243
244
245
246
247
248
249
250
251
252
    def filter_for_compatible_extensions(filenames, ignore_patterns=None):
        if not ignore_patterns:
            return filenames

        # ignore patterns uses glob style patterns e.g *.safetensors but we're only
        # interested in the extension name
        return {f for f in filenames if not any(f.endswith(pat.lstrip("*.")) for pat in ignore_patterns)}

    # Group files by component
    components = {}
    for filename in filenames:
        if not len(filename.split("/")) == 2:
            components.setdefault("", []).append(filename)
            continue
253

254
255
        component, _ = filename.split("/")
        components.setdefault(component, []).append(filename)
256

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    usable_filenames = set()
    variant_filenames = set()
    for component, component_filenames in components.items():
        component_filenames = filter_for_compatible_extensions(component_filenames, ignore_patterns=ignore_patterns)

        component_variants = set()
        component_legacy_variants = set()
        component_non_variants = set()
        if variant is not None:
            component_variants = filter_with_regex(component_filenames, variant_file_re)
            component_variant_index_files = filter_with_regex(component_filenames, variant_index_re)

            component_legacy_variants = filter_with_regex(component_filenames, legacy_variant_file_re)
            component_legacy_variant_index_files = filter_with_regex(component_filenames, legacy_variant_index_re)

        if component_variants or component_legacy_variants:
            variant_filenames.update(
                component_variants | component_variant_index_files
                if component_variants
                else component_legacy_variants | component_legacy_variant_index_files
            )
278
279

        else:
280
281
            component_non_variants = filter_with_regex(component_filenames, non_variant_file_re)
            component_variant_index_files = filter_with_regex(component_filenames, non_variant_index_re)
282

283
            usable_filenames.update(component_non_variants | component_variant_index_files)
284

285
    usable_filenames.update(variant_filenames)
286

287
288
289
    if len(variant_filenames) == 0 and variant is not None:
        error_message = f"You are trying to load model files of the `variant={variant}`, but no such modeling files are available. "
        raise ValueError(error_message)
290

291
292
293
294
295
296
297
    if len(variant_filenames) > 0 and usable_filenames != variant_filenames:
        logger.warning(
            f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n"
            f"[{', '.join(variant_filenames)}]\nLoaded non-{variant} filenames:\n"
            f"[{', '.join(usable_filenames - variant_filenames)}\nIf this behavior is not "
            f"expected, please check your folder structure."
        )
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

    return usable_filenames, variant_filenames


@validate_hf_hub_args
def warn_deprecated_model_variant(pretrained_model_name_or_path, token, variant, revision, model_filenames):
    info = model_info(
        pretrained_model_name_or_path,
        token=token,
        revision=None,
    )
    filenames = {sibling.rfilename for sibling in info.siblings}
    comp_model_filenames, _ = variant_compatible_siblings(filenames, variant=revision)
    comp_model_filenames = [".".join(f.split(".")[:1] + f.split(".")[2:]) for f in comp_model_filenames]

    if set(model_filenames).issubset(set(comp_model_filenames)):
        warnings.warn(
            f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` even though you can load it via `variant=`{revision}`. Loading model variants via `revision='{revision}'` is deprecated and will be removed in diffusers v1. Please use `variant='{revision}'` instead.",
            FutureWarning,
        )
    else:
        warnings.warn(
            f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have the required variant filenames in the 'main' branch. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {revision} files' so that the correct variant file can be added.",
            FutureWarning,
        )


def _unwrap_model(model):
    """Unwraps a model."""
    if is_compiled_module(model):
        model = model._orig_mod

    if is_peft_available():
        from peft import PeftModel

        if isinstance(model, PeftModel):
            model = model.base_model.model

    return model


def maybe_raise_or_warn(
    library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
):
    """Simple helper method to raise or warn in case incorrect module has been passed"""
    if not is_pipeline_module:
        library = importlib.import_module(library_name)
        class_obj = getattr(library, class_name)
        class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}

        expected_class_obj = None
        for class_name, class_candidate in class_candidates.items():
            if class_candidate is not None and issubclass(class_obj, class_candidate):
                expected_class_obj = class_candidate

        # Dynamo wraps the original model in a private class.
        # I didn't find a public API to get the original class.
        sub_model = passed_class_obj[name]
        unwrapped_sub_model = _unwrap_model(sub_model)
        model_cls = unwrapped_sub_model.__class__

        if not issubclass(model_cls, expected_class_obj):
360
            raise ValueError(f"{passed_class_obj[name]} is of type: {model_cls}, but should be {expected_class_obj}")
361
362
363
364
365
366
367
368
369
370
371
    else:
        logger.warning(
            f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
            " has the correct type"
        )


def get_class_obj_and_candidates(
    library_name, class_name, importable_classes, pipelines, is_pipeline_module, component_name=None, cache_dir=None
):
    """Simple helper method to retrieve class object of module as well as potential parent class objects"""
372
    component_folder = os.path.join(cache_dir, component_name) if component_name and cache_dir else None
373
374
375
376
377

    if is_pipeline_module:
        pipeline_module = getattr(pipelines, library_name)

        class_obj = getattr(pipeline_module, class_name)
378
        class_candidates = dict.fromkeys(importable_classes.keys(), class_obj)
379
    elif component_folder and os.path.isfile(os.path.join(component_folder, library_name + ".py")):
380
381
382
383
        # load custom component
        class_obj = get_class_from_dynamic_module(
            component_folder, module_file=library_name + ".py", class_name=class_name
        )
384
        class_candidates = dict.fromkeys(importable_classes.keys(), class_obj)
385
386
387
388
389
390
391
392
393
394
    else:
        # else we just import it from the library.
        library = importlib.import_module(library_name)

        class_obj = getattr(library, class_name)
        class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}

    return class_obj, class_candidates


395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
def _get_custom_pipeline_class(
    custom_pipeline,
    repo_id=None,
    hub_revision=None,
    class_name=None,
    cache_dir=None,
    revision=None,
):
    if custom_pipeline.endswith(".py"):
        path = Path(custom_pipeline)
        # decompose into folder & file
        file_name = path.name
        custom_pipeline = path.parent.absolute()
    elif repo_id is not None:
        file_name = f"{custom_pipeline}.py"
        custom_pipeline = repo_id
    else:
        file_name = CUSTOM_PIPELINE_FILE_NAME

    if repo_id is not None and hub_revision is not None:
        # if we load the pipeline code from the Hub
        # make sure to overwrite the `revision`
        revision = hub_revision

    return get_class_from_dynamic_module(
        custom_pipeline,
        module_file=file_name,
        class_name=class_name,
        cache_dir=cache_dir,
        revision=revision,
    )


428
429
430
431
432
433
434
435
436
437
438
439
def _get_pipeline_class(
    class_obj,
    config=None,
    load_connected_pipeline=False,
    custom_pipeline=None,
    repo_id=None,
    hub_revision=None,
    class_name=None,
    cache_dir=None,
    revision=None,
):
    if custom_pipeline is not None:
440
        return _get_custom_pipeline_class(
441
            custom_pipeline,
442
443
            repo_id=repo_id,
            hub_revision=hub_revision,
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
            class_name=class_name,
            cache_dir=cache_dir,
            revision=revision,
        )

    if class_obj.__name__ != "DiffusionPipeline":
        return class_obj

    diffusers_module = importlib.import_module(class_obj.__module__.split(".")[0])
    class_name = class_name or config["_class_name"]
    if not class_name:
        raise ValueError(
            "The class name could not be found in the configuration file. Please make sure to pass the correct `class_name`."
        )

    class_name = class_name[4:] if class_name.startswith("Flax") else class_name

    pipeline_cls = getattr(diffusers_module, class_name)

    if load_connected_pipeline:
        from .auto_pipeline import _get_connected_pipeline

        connected_pipeline_cls = _get_connected_pipeline(pipeline_cls)
        if connected_pipeline_cls is not None:
            logger.info(
                f"Loading connected pipeline {connected_pipeline_cls.__name__} instead of {pipeline_cls.__name__} as specified via `load_connected_pipeline=True`"
            )
        else:
            logger.info(f"{pipeline_cls.__name__} has no connected pipeline class. Loading {pipeline_cls.__name__}.")

        pipeline_cls = connected_pipeline_cls or pipeline_cls

    return pipeline_cls


479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
def _load_empty_model(
    library_name: str,
    class_name: str,
    importable_classes: List[Any],
    pipelines: Any,
    is_pipeline_module: bool,
    name: str,
    torch_dtype: Union[str, torch.dtype],
    cached_folder: Union[str, os.PathLike],
    **kwargs,
):
    # retrieve class objects.
    class_obj, _ = get_class_obj_and_candidates(
        library_name,
        class_name,
        importable_classes,
        pipelines,
        is_pipeline_module,
        component_name=name,
        cache_dir=cached_folder,
    )

    if is_transformers_available():
        transformers_version = version.parse(version.parse(transformers.__version__).base_version)
    else:
        transformers_version = "N/A"

    # Determine library.
    is_transformers_model = (
        is_transformers_available()
        and issubclass(class_obj, PreTrainedModel)
        and transformers_version >= version.parse("4.20.0")
    )
    diffusers_module = importlib.import_module(__name__.split(".")[0])
    is_diffusers_model = issubclass(class_obj, diffusers_module.ModelMixin)

    model = None
    config_path = cached_folder
    user_agent = {
        "diffusers": __version__,
        "file_type": "model",
        "framework": "pytorch",
    }

    if is_diffusers_model:
        # Load config and then the model on meta.
        config, unused_kwargs, commit_hash = class_obj.load_config(
            os.path.join(config_path, name),
            cache_dir=cached_folder,
            return_unused_kwargs=True,
            return_commit_hash=True,
            force_download=kwargs.pop("force_download", False),
            proxies=kwargs.pop("proxies", None),
            local_files_only=kwargs.pop("local_files_only", False),
            token=kwargs.pop("token", None),
            revision=kwargs.pop("revision", None),
            subfolder=kwargs.pop("subfolder", None),
            user_agent=user_agent,
        )
        with accelerate.init_empty_weights():
            model = class_obj.from_config(config, **unused_kwargs)
    elif is_transformers_model:
        config_class = getattr(class_obj, "config_class", None)
        if config_class is None:
            raise ValueError("`config_class` cannot be None. Please double-check the model.")

        config = config_class.from_pretrained(
            cached_folder,
            subfolder=name,
            force_download=kwargs.pop("force_download", False),
            proxies=kwargs.pop("proxies", None),
            local_files_only=kwargs.pop("local_files_only", False),
            token=kwargs.pop("token", None),
            revision=kwargs.pop("revision", None),
            user_agent=user_agent,
        )
        with accelerate.init_empty_weights():
            model = class_obj(config)

    if model is not None:
        model = model.to(dtype=torch_dtype)
    return model


def _assign_components_to_devices(
    module_sizes: Dict[str, float], device_memory: Dict[str, float], device_mapping_strategy: str = "balanced"
):
    device_ids = list(device_memory.keys())
    device_cycle = device_ids + device_ids[::-1]
    device_memory = device_memory.copy()

    device_id_component_mapping = {}
    current_device_index = 0
    for component in module_sizes:
        device_id = device_cycle[current_device_index % len(device_cycle)]
        component_memory = module_sizes[component]
        curr_device_memory = device_memory[device_id]

        # If the GPU doesn't fit the current component offload to the CPU.
        if component_memory > curr_device_memory:
            device_id_component_mapping["cpu"] = [component]
        else:
            if device_id not in device_id_component_mapping:
                device_id_component_mapping[device_id] = [component]
            else:
                device_id_component_mapping[device_id].append(component)

            # Update the device memory.
            device_memory[device_id] -= component_memory
            current_device_index += 1

    return device_id_component_mapping


def _get_final_device_map(device_map, pipeline_class, passed_class_obj, init_dict, library, max_memory, **kwargs):
    # To avoid circular import problem.
    from diffusers import pipelines

    torch_dtype = kwargs.get("torch_dtype", torch.float32)

    # Load each module in the pipeline on a meta device so that we can derive the device map.
    init_empty_modules = {}
    for name, (library_name, class_name) in init_dict.items():
        if class_name.startswith("Flax"):
            raise ValueError("Flax pipelines are not supported with `device_map`.")

        # Define all importable classes
        is_pipeline_module = hasattr(pipelines, library_name)
        importable_classes = ALL_IMPORTABLE_CLASSES
        loaded_sub_model = None

        # Use passed sub model or load class_name from library_name
        if name in passed_class_obj:
            # if the model is in a pipeline module, then we load it from the pipeline
            # check that passed_class_obj has correct parent class
            maybe_raise_or_warn(
                library_name,
                library,
                class_name,
                importable_classes,
                passed_class_obj,
                name,
                is_pipeline_module,
            )
            with accelerate.init_empty_weights():
                loaded_sub_model = passed_class_obj[name]

        else:
627
628
629
630
631
            sub_model_dtype = (
                torch_dtype.get(name, torch_dtype.get("default", torch.float32))
                if isinstance(torch_dtype, dict)
                else torch_dtype
            )
632
633
634
635
636
637
638
639
            loaded_sub_model = _load_empty_model(
                library_name=library_name,
                class_name=class_name,
                importable_classes=importable_classes,
                pipelines=pipelines,
                is_pipeline_module=is_pipeline_module,
                pipeline_class=pipeline_class,
                name=name,
640
                torch_dtype=sub_model_dtype,
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
                cached_folder=kwargs.get("cached_folder", None),
                force_download=kwargs.get("force_download", None),
                proxies=kwargs.get("proxies", None),
                local_files_only=kwargs.get("local_files_only", None),
                token=kwargs.get("token", None),
                revision=kwargs.get("revision", None),
            )

        if loaded_sub_model is not None:
            init_empty_modules[name] = loaded_sub_model

    # determine device map
    # Obtain a sorted dictionary for mapping the model-level components
    # to their sizes.
    module_sizes = {
656
657
658
659
660
661
        module_name: compute_module_sizes(
            module,
            dtype=torch_dtype.get(module_name, torch_dtype.get("default", torch.float32))
            if isinstance(torch_dtype, dict)
            else torch_dtype,
        )[""]
662
663
664
665
666
667
668
669
670
671
672
673
        for module_name, module in init_empty_modules.items()
        if isinstance(module, torch.nn.Module)
    }
    module_sizes = dict(sorted(module_sizes.items(), key=lambda item: item[1], reverse=True))

    # Obtain maximum memory available per device (GPUs only).
    max_memory = get_max_memory(max_memory)
    max_memory = dict(sorted(max_memory.items(), key=lambda item: item[1], reverse=True))
    max_memory = {k: v for k, v in max_memory.items() if k != "cpu"}

    # Obtain a dictionary mapping the model-level components to the available
    # devices based on the maximum memory and the model sizes.
674
675
676
677
678
    final_device_map = None
    if len(max_memory) > 0:
        device_id_component_mapping = _assign_components_to_devices(
            module_sizes, max_memory, device_mapping_strategy=device_map
        )
679

680
681
682
683
684
        # Obtain the final device map, e.g., `{"unet": 0, "text_encoder": 1, "vae": 1, ...}`
        final_device_map = {}
        for device_id, components in device_id_component_mapping.items():
            for component in components:
                final_device_map[component] = device_id
685
686
687
688

    return final_device_map


689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
def load_sub_model(
    library_name: str,
    class_name: str,
    importable_classes: List[Any],
    pipelines: Any,
    is_pipeline_module: bool,
    pipeline_class: Any,
    torch_dtype: torch.dtype,
    provider: Any,
    sess_options: Any,
    device_map: Optional[Union[Dict[str, torch.device], str]],
    max_memory: Optional[Dict[Union[int, str], Union[int, str]]],
    offload_folder: Optional[Union[str, os.PathLike]],
    offload_state_dict: bool,
    model_variants: Dict[str, str],
    name: str,
    from_flax: bool,
    variant: str,
    low_cpu_mem_usage: bool,
    cached_folder: Union[str, os.PathLike],
709
    use_safetensors: bool,
Marc Sun's avatar
Marc Sun committed
710
    dduf_entries: Optional[Dict[str, DDUFEntry]],
711
    provider_options: Any,
712
    quantization_config: Optional[Any] = None,
713
714
):
    """Helper method to load the module `name` from `library_name` and `class_name`"""
715
    from ..quantizers import PipelineQuantizationConfig
716

717
    # retrieve class candidates
718

719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
    class_obj, class_candidates = get_class_obj_and_candidates(
        library_name,
        class_name,
        importable_classes,
        pipelines,
        is_pipeline_module,
        component_name=name,
        cache_dir=cached_folder,
    )

    load_method_name = None
    # retrieve load method name
    for class_name, class_candidate in class_candidates.items():
        if class_candidate is not None and issubclass(class_obj, class_candidate):
            load_method_name = importable_classes[class_name][1]

    # if load method name is None, then we have a dummy module -> raise Error
    if load_method_name is None:
        none_module = class_obj.__module__
        is_dummy_path = none_module.startswith(DUMMY_MODULES_FOLDER) or none_module.startswith(
            TRANSFORMERS_DUMMY_MODULES_FOLDER
        )
        if is_dummy_path and "dummy" in none_module:
            # call class_obj for nice error message of missing requirements
            class_obj()

        raise ValueError(
            f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have"
            f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}."
        )

Marc Sun's avatar
Marc Sun committed
750
    load_method = _get_load_method(class_obj, load_method_name, is_dduf=dduf_entries is not None)
751
752
753
754
755
756
757
758
759

    # add kwargs to loading method
    diffusers_module = importlib.import_module(__name__.split(".")[0])
    loading_kwargs = {}
    if issubclass(class_obj, torch.nn.Module):
        loading_kwargs["torch_dtype"] = torch_dtype
    if issubclass(class_obj, diffusers_module.OnnxRuntimeModel):
        loading_kwargs["provider"] = provider
        loading_kwargs["sess_options"] = sess_options
760
        loading_kwargs["provider_options"] = provider_options
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783

    is_diffusers_model = issubclass(class_obj, diffusers_module.ModelMixin)

    if is_transformers_available():
        transformers_version = version.parse(version.parse(transformers.__version__).base_version)
    else:
        transformers_version = "N/A"

    is_transformers_model = (
        is_transformers_available()
        and issubclass(class_obj, PreTrainedModel)
        and transformers_version >= version.parse("4.20.0")
    )

    # When loading a transformers model, if the device_map is None, the weights will be initialized as opposed to diffusers.
    # To make default loading faster we set the `low_cpu_mem_usage=low_cpu_mem_usage` flag which is `True` by default.
    # This makes sure that the weights won't be initialized which significantly speeds up loading.
    if is_diffusers_model or is_transformers_model:
        loading_kwargs["device_map"] = device_map
        loading_kwargs["max_memory"] = max_memory
        loading_kwargs["offload_folder"] = offload_folder
        loading_kwargs["offload_state_dict"] = offload_state_dict
        loading_kwargs["variant"] = model_variants.pop(name, None)
784
        loading_kwargs["use_safetensors"] = use_safetensors
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807

        if from_flax:
            loading_kwargs["from_flax"] = True

        # the following can be deleted once the minimum required `transformers` version
        # is higher than 4.27
        if (
            is_transformers_model
            and loading_kwargs["variant"] is not None
            and transformers_version < version.parse("4.27.0")
        ):
            raise ImportError(
                f"When passing `variant='{variant}'`, please make sure to upgrade your `transformers` version to at least 4.27.0.dev0"
            )
        elif is_transformers_model and loading_kwargs["variant"] is None:
            loading_kwargs.pop("variant")

        # if `from_flax` and model is transformer model, can currently not load with `low_cpu_mem_usage`
        if not (from_flax and is_transformers_model):
            loading_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
        else:
            loading_kwargs["low_cpu_mem_usage"] = False

808
809
810
811
812
813
814
815
816
817
818
    if (
        quantization_config is not None
        and isinstance(quantization_config, PipelineQuantizationConfig)
        and issubclass(class_obj, torch.nn.Module)
    ):
        model_quant_config = quantization_config._resolve_quant_config(
            is_diffusers=is_diffusers_model, module_name=name
        )
        if model_quant_config is not None:
            loading_kwargs["quantization_config"] = model_quant_config

819
    # check if the module is in a subdirectory
Marc Sun's avatar
Marc Sun committed
820
821
822
823
    if dduf_entries:
        loading_kwargs["dduf_entries"] = dduf_entries
        loaded_sub_model = load_method(name, **loading_kwargs)
    elif os.path.isdir(os.path.join(cached_folder, name)):
824
825
826
827
828
        loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
    else:
        # else load from the root directory
        loaded_sub_model = load_method(cached_folder, **loading_kwargs)

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
    if isinstance(loaded_sub_model, torch.nn.Module) and isinstance(device_map, dict):
        # remove hooks
        remove_hook_from_module(loaded_sub_model, recurse=True)
        needs_offloading_to_cpu = device_map[""] == "cpu"

        if needs_offloading_to_cpu:
            dispatch_model(
                loaded_sub_model,
                state_dict=loaded_sub_model.state_dict(),
                device_map=device_map,
                force_hooks=True,
                main_device=0,
            )
        else:
            dispatch_model(loaded_sub_model, device_map=device_map, force_hooks=True)

845
846
847
    return loaded_sub_model


Marc Sun's avatar
Marc Sun committed
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
def _get_load_method(class_obj: object, load_method_name: str, is_dduf: bool) -> Callable:
    """
    Return the method to load the sub model.

    In practice, this method will return the `"from_pretrained"` (or `load_method_name`) method of the class object
    except if loading from a DDUF checkpoint. In that case, transformers models and tokenizers have a specific loading
    method that we need to use.
    """
    if is_dduf:
        if issubclass(class_obj, PreTrainedTokenizerBase):
            return lambda *args, **kwargs: _load_tokenizer_from_dduf(class_obj, *args, **kwargs)
        if issubclass(class_obj, PreTrainedModel):
            return lambda *args, **kwargs: _load_transformers_model_from_dduf(class_obj, *args, **kwargs)
    return getattr(class_obj, load_method_name)


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
def _fetch_class_library_tuple(module):
    # import it here to avoid circular import
    diffusers_module = importlib.import_module(__name__.split(".")[0])
    pipelines = getattr(diffusers_module, "pipelines")

    # register the config from the original module, not the dynamo compiled one
    not_compiled_module = _unwrap_model(module)
    library = not_compiled_module.__module__.split(".")[0]

    # check if the module is a pipeline module
    module_path_items = not_compiled_module.__module__.split(".")
    pipeline_dir = module_path_items[-2] if len(module_path_items) > 2 else None

    path = not_compiled_module.__module__.split(".")
    is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)

    # if library is not in LOADABLE_CLASSES, then it is a custom module.
    # Or if it's a pipeline module, then the module is inside the pipeline
    # folder so we set the library to module name.
    if is_pipeline_module:
        library = pipeline_dir
    elif library not in LOADABLE_CLASSES:
        library = not_compiled_module.__module__

    # retrieve class_name
    class_name = not_compiled_module.__class__.__name__

    return (library, class_name)
892
893
894
895
896


def _identify_model_variants(folder: str, variant: str, config: dict) -> dict:
    model_variants = {}
    if variant is not None:
YiYi Xu's avatar
YiYi Xu committed
897
898
899
        for sub_folder in os.listdir(folder):
            folder_path = os.path.join(folder, sub_folder)
            is_folder = os.path.isdir(folder_path) and sub_folder in config
900
901
            variant_exists = is_folder and any(p.split(".")[1].startswith(variant) for p in os.listdir(folder_path))
            if variant_exists:
YiYi Xu's avatar
YiYi Xu committed
902
                model_variants[sub_folder] = variant
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
    return model_variants


def _resolve_custom_pipeline_and_cls(folder, config, custom_pipeline):
    custom_class_name = None
    if os.path.isfile(os.path.join(folder, f"{custom_pipeline}.py")):
        custom_pipeline = os.path.join(folder, f"{custom_pipeline}.py")
    elif isinstance(config["_class_name"], (list, tuple)) and os.path.isfile(
        os.path.join(folder, f"{config['_class_name'][0]}.py")
    ):
        custom_pipeline = os.path.join(folder, f"{config['_class_name'][0]}.py")
        custom_class_name = config["_class_name"][1]

    return custom_pipeline, custom_class_name


def _maybe_raise_warning_for_inpainting(pipeline_class, pretrained_model_name_or_path: str, config: dict):
    if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse(
        version.parse(config["_diffusers_version"]).base_version
    ) <= version.parse("0.5.1"):
        from diffusers import StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy

        pipeline_class = StableDiffusionInpaintPipelineLegacy

        deprecation_message = (
            "You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
            f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
            " better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
931
            " checkpoint: https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting instead or adapting your"
932
            f" checkpoint {pretrained_model_name_or_path} to the format of"
933
            " https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting. Note that we do not actively maintain"
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
            " the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
        )
        deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)


def _update_init_kwargs_with_connected_pipeline(
    init_kwargs: dict, passed_pipe_kwargs: dict, passed_class_objs: dict, folder: str, **pipeline_loading_kwargs
) -> dict:
    from .pipeline_utils import DiffusionPipeline

    modelcard = ModelCard.load(os.path.join(folder, "README.md"))
    connected_pipes = {prefix: getattr(modelcard.data, prefix, [None])[0] for prefix in CONNECTED_PIPES_KEYS}

    # We don't scheduler argument to match the existing logic:
    # https://github.com/huggingface/diffusers/blob/867e0c919e1aa7ef8b03c8eb1460f4f875a683ae/src/diffusers/pipelines/pipeline_utils.py#L906C13-L925C14
    pipeline_loading_kwargs_cp = pipeline_loading_kwargs.copy()
    if pipeline_loading_kwargs_cp is not None and len(pipeline_loading_kwargs_cp) >= 1:
        for k in pipeline_loading_kwargs:
            if "scheduler" in k:
                _ = pipeline_loading_kwargs_cp.pop(k)

    def get_connected_passed_kwargs(prefix):
        connected_passed_class_obj = {
            k.replace(f"{prefix}_", ""): w for k, w in passed_class_objs.items() if k.split("_")[0] == prefix
        }
        connected_passed_pipe_kwargs = {
            k.replace(f"{prefix}_", ""): w for k, w in passed_pipe_kwargs.items() if k.split("_")[0] == prefix
        }

        connected_passed_kwargs = {**connected_passed_class_obj, **connected_passed_pipe_kwargs}
        return connected_passed_kwargs

    connected_pipes = {
        prefix: DiffusionPipeline.from_pretrained(
            repo_id, **pipeline_loading_kwargs_cp, **get_connected_passed_kwargs(prefix)
        )
        for prefix, repo_id in connected_pipes.items()
        if repo_id is not None
    }

    for prefix, connected_pipe in connected_pipes.items():
        # add connected pipes to `init_kwargs` with <prefix>_<component_name>, e.g. "prior_text_encoder"
        init_kwargs.update(
            {"_".join([prefix, name]): component for name, component in connected_pipe.components.items()}
        )

    return init_kwargs
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033


def _get_custom_components_and_folders(
    pretrained_model_name: str,
    config_dict: Dict[str, Any],
    filenames: Optional[List[str]] = None,
    variant_filenames: Optional[List[str]] = None,
    variant: Optional[str] = None,
):
    config_dict = config_dict.copy()

    # retrieve all folder_names that contain relevant files
    folder_names = [k for k, v in config_dict.items() if isinstance(v, list) and k != "_class_name"]

    diffusers_module = importlib.import_module(__name__.split(".")[0])
    pipelines = getattr(diffusers_module, "pipelines")

    # optionally create a custom component <> custom file mapping
    custom_components = {}
    for component in folder_names:
        module_candidate = config_dict[component][0]

        if module_candidate is None or not isinstance(module_candidate, str):
            continue

        # We compute candidate file path on the Hub. Do not use `os.path.join`.
        candidate_file = f"{component}/{module_candidate}.py"

        if candidate_file in filenames:
            custom_components[component] = module_candidate
        elif module_candidate not in LOADABLE_CLASSES and not hasattr(pipelines, module_candidate):
            raise ValueError(
                f"{candidate_file} as defined in `model_index.json` does not exist in {pretrained_model_name} and is not a module in 'diffusers/pipelines'."
            )

    return custom_components, folder_names


def _get_ignore_patterns(
    passed_components,
    model_folder_names: List[str],
    model_filenames: List[str],
    use_safetensors: bool,
    from_flax: bool,
    allow_pickle: bool,
    use_onnx: bool,
    is_onnx: bool,
    variant: Optional[str] = None,
) -> List[str]:
    if (
        use_safetensors
        and not allow_pickle
        and not is_safetensors_compatible(
1034
            model_filenames, passed_components=passed_components, folder_names=model_folder_names, variant=variant
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
        )
    ):
        raise EnvironmentError(
            f"Could not find the necessary `safetensors` weights in {model_filenames} (variant={variant})"
        )

    if from_flax:
        ignore_patterns = ["*.bin", "*.safetensors", "*.onnx", "*.pb"]

    elif use_safetensors and is_safetensors_compatible(
1045
        model_filenames, passed_components=passed_components, folder_names=model_folder_names, variant=variant
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
    ):
        ignore_patterns = ["*.bin", "*.msgpack"]

        use_onnx = use_onnx if use_onnx is not None else is_onnx
        if not use_onnx:
            ignore_patterns += ["*.onnx", "*.pb"]

    else:
        ignore_patterns = ["*.safetensors", "*.msgpack"]

        use_onnx = use_onnx if use_onnx is not None else is_onnx
        if not use_onnx:
            ignore_patterns += ["*.onnx", "*.pb"]

    return ignore_patterns
Marc Sun's avatar
Marc Sun committed
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127


def _download_dduf_file(
    pretrained_model_name: str,
    dduf_file: str,
    pipeline_class_name: str,
    cache_dir: str,
    proxies: str,
    local_files_only: bool,
    token: str,
    revision: str,
):
    model_info_call_error = None
    if not local_files_only:
        try:
            info = model_info(pretrained_model_name, token=token, revision=revision)
        except (HTTPError, OfflineModeIsEnabled, requests.ConnectionError) as e:
            logger.warning(f"Couldn't connect to the Hub: {e}.\nWill try to load from local cache.")
            local_files_only = True
            model_info_call_error = e  # save error to reraise it if model is not cached locally

    if (
        not local_files_only
        and dduf_file is not None
        and dduf_file not in (sibling.rfilename for sibling in info.siblings)
    ):
        raise ValueError(f"Requested {dduf_file} file is not available in {pretrained_model_name}.")

    try:
        user_agent = {"pipeline_class": pipeline_class_name, "dduf": True}
        cached_folder = snapshot_download(
            pretrained_model_name,
            cache_dir=cache_dir,
            proxies=proxies,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
            allow_patterns=[dduf_file],
            user_agent=user_agent,
        )
        return cached_folder
    except FileNotFoundError:
        # Means we tried to load pipeline with `local_files_only=True` but the files have not been found in local cache.
        # This can happen in two cases:
        # 1. If the user passed `local_files_only=True`                    => we raise the error directly
        # 2. If we forced `local_files_only=True` when `model_info` failed => we raise the initial error
        if model_info_call_error is None:
            # 1. user passed `local_files_only=True`
            raise
        else:
            # 2. we forced `local_files_only=True` when `model_info` failed
            raise EnvironmentError(
                f"Cannot load model {pretrained_model_name}: model is not cached locally and an error occurred"
                " while trying to fetch metadata from the Hub. Please check out the root cause in the stacktrace"
                " above."
            ) from model_info_call_error


def _maybe_raise_error_for_incorrect_transformers(config_dict):
    has_transformers_component = False
    for k in config_dict:
        if isinstance(config_dict[k], list):
            has_transformers_component = config_dict[k][0] == "transformers"
            if has_transformers_component:
                break
    if has_transformers_component and not is_transformers_version(">", "4.47.1"):
        raise ValueError("Please upgrade your `transformers` installation to the latest version to use DDUF.")