unet.py 43.4 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
15
from collections import defaultdict
16
from contextlib import nullcontext
gzguevara's avatar
gzguevara committed
17
from pathlib import Path
18
from typing import Callable, Dict, Union
19
20
21

import safetensors
import torch
22
import torch.nn.functional as F
23
from huggingface_hub.utils import validate_hf_hub_args
24
25
from torch import nn

26
27
from ..models.embeddings import (
    ImageProjection,
28
29
    IPAdapterFaceIDImageProjection,
    IPAdapterFaceIDPlusImageProjection,
30
31
32
33
    IPAdapterFullImageProjection,
    IPAdapterPlusImageProjection,
    MultiIPAdapterImageProjection,
)
34
from ..models.modeling_utils import load_model_dict_into_meta, load_state_dict
35
36
37
from ..utils import (
    USE_PEFT_BACKEND,
    _get_model_file,
38
39
40
    convert_unet_state_dict_to_peft,
    get_adapter_name,
    get_peft_kwargs,
41
    is_accelerate_available,
42
    is_peft_version,
43
    is_torch_version,
44
45
    logging,
)
46
from .lora_pipeline import LORA_WEIGHT_NAME, LORA_WEIGHT_NAME_SAFE, TEXT_ENCODER_NAME, UNET_NAME
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from .utils import AttnProcsLayers


if is_accelerate_available():
    from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module

logger = logging.get_logger(__name__)


CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"


class UNet2DConditionLoadersMixin:
Steven Liu's avatar
Steven Liu committed
61
62
63
64
    """
    Load LoRA layers into a [`UNet2DCondtionModel`].
    """

65
66
67
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME

68
    @validate_hf_hub_args
69
70
71
72
73
    def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        r"""
        Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
        defined in
        [`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py)
74
75
        and be a `torch.nn.Module` class. Currently supported: LoRA, Custom Diffusion. For LoRA, one must install
        `peft`: `pip install -U peft`.
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a directory (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
94

95
96
97
98
99
100
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
101
            token (`str` or *bool*, *optional*):
102
103
104
105
106
107
108
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
109
110
111
112
113
114
115
116
117
            network_alphas (`Dict[str, float]`):
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
            adapter_name (`str`, *optional*, defaults to None):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
            weight_name (`str`, *optional*, defaults to None):
                Name of the serialized state dict file.
118
119
120
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
121

Steven Liu's avatar
Steven Liu committed
122
123
124
125
126
127
128
129
130
131
132
133
134
        Example:

        ```py
        from diffusers import AutoPipelineForText2Image
        import torch

        pipeline = AutoPipelineForText2Image.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.unet.load_attn_procs(
            "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
        )
        ```
135
        """
136
        cache_dir = kwargs.pop("cache_dir", None)
137
138
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
139
140
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
141
142
143
144
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
145
        adapter_name = kwargs.pop("adapter_name", None)
146
        _pipeline = kwargs.pop("_pipeline", None)
147
        network_alphas = kwargs.pop("network_alphas", None)
148
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", False)
149
150
        allow_pickle = False

151
152
153
154
155
        if low_cpu_mem_usage and is_peft_version("<=", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

        model_file = None
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
            # Let's first try to load .safetensors weights
            if (use_safetensors and weight_name is None) or (
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
                        cache_dir=cache_dir,
                        force_download=force_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
179
                        token=token,
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
                except IOError as e:
                    if not allow_pickle:
                        raise e
                    # try loading non-safetensors weights
                    pass
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
                    weights_name=weight_name or LORA_WEIGHT_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
198
                    token=token,
199
200
201
202
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
203
                state_dict = load_state_dict(model_file)
204
205
206
207
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())
208
209
210
        is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys())
        is_model_cpu_offload = False
        is_sequential_cpu_offload = False
211

212
213
214
215
216
217
218
219
220
        if is_custom_diffusion:
            attn_processors = self._process_custom_diffusion(state_dict=state_dict)
        elif is_lora:
            is_model_cpu_offload, is_sequential_cpu_offload = self._process_lora(
                state_dict=state_dict,
                unet_identifier_key=self.unet_name,
                network_alphas=network_alphas,
                adapter_name=adapter_name,
                _pipeline=_pipeline,
221
                low_cpu_mem_usage=low_cpu_mem_usage,
222
223
224
225
226
            )
        else:
            raise ValueError(
                f"{model_file} does not seem to be in the correct format expected by Custom Diffusion training."
            )
227

228
229
230
        # <Unsafe code
        # We can be sure that the following works as it just sets attention processors, lora layers and puts all in the same dtype
        # Now we remove any existing hooks to `_pipeline`.
231

232
233
234
        # For LoRA, the UNet is already offloaded at this stage as it is handled inside `_process_lora`.
        if is_custom_diffusion and _pipeline is not None:
            is_model_cpu_offload, is_sequential_cpu_offload = self._optionally_disable_offloading(_pipeline=_pipeline)
235

236
237
238
            # only custom diffusion needs to set attn processors
            self.set_attn_processor(attn_processors)
            self.to(dtype=self.dtype, device=self.device)
239

240
241
242
243
244
245
        # Offload back.
        if is_model_cpu_offload:
            _pipeline.enable_model_cpu_offload()
        elif is_sequential_cpu_offload:
            _pipeline.enable_sequential_cpu_offload()
        # Unsafe code />
246

247
248
249
250
251
252
253
254
255
256
257
    def _process_custom_diffusion(self, state_dict):
        from ..models.attention_processor import CustomDiffusionAttnProcessor

        attn_processors = {}
        custom_diffusion_grouped_dict = defaultdict(dict)
        for key, value in state_dict.items():
            if len(value) == 0:
                custom_diffusion_grouped_dict[key] = {}
            else:
                if "to_out" in key:
                    attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
258
                else:
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
                    attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
                custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value

        for key, value_dict in custom_diffusion_grouped_dict.items():
            if len(value_dict) == 0:
                attn_processors[key] = CustomDiffusionAttnProcessor(
                    train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
                )
            else:
                cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
                hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
                train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
                attn_processors[key] = CustomDiffusionAttnProcessor(
                    train_kv=True,
                    train_q_out=train_q_out,
                    hidden_size=hidden_size,
                    cross_attention_dim=cross_attention_dim,
                )
                attn_processors[key].load_state_dict(value_dict)

        return attn_processors

281
282
283
    def _process_lora(
        self, state_dict, unet_identifier_key, network_alphas, adapter_name, _pipeline, low_cpu_mem_usage
    ):
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
        # This method does the following things:
        # 1. Filters the `state_dict` with keys matching  `unet_identifier_key` when using the non-legacy
        #    format. For legacy format no filtering is applied.
        # 2. Converts the `state_dict` to the `peft` compatible format.
        # 3. Creates a `LoraConfig` and then injects the converted `state_dict` into the UNet per the
        #    `LoraConfig` specs.
        # 4. It also reports if the underlying `_pipeline` has any kind of offloading inside of it.
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict

        keys = list(state_dict.keys())

        unet_keys = [k for k in keys if k.startswith(unet_identifier_key)]
        unet_state_dict = {
            k.replace(f"{unet_identifier_key}.", ""): v for k, v in state_dict.items() if k in unet_keys
        }

        if network_alphas is not None:
            alpha_keys = [k for k in network_alphas.keys() if k.startswith(unet_identifier_key)]
            network_alphas = {
                k.replace(f"{unet_identifier_key}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
            }
308
309
310

        is_model_cpu_offload = False
        is_sequential_cpu_offload = False
311
        state_dict_to_be_used = unet_state_dict if len(unet_state_dict) > 0 else state_dict
312

313
314
315
316
317
        if len(state_dict_to_be_used) > 0:
            if adapter_name in getattr(self, "peft_config", {}):
                raise ValueError(
                    f"Adapter name {adapter_name} already in use in the Unet - please select a new adapter name."
                )
318

319
            state_dict = convert_unet_state_dict_to_peft(state_dict_to_be_used)
320

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
            if network_alphas is not None:
                # The alphas state dict have the same structure as Unet, thus we convert it to peft format using
                # `convert_unet_state_dict_to_peft` method.
                network_alphas = convert_unet_state_dict_to_peft(network_alphas)

            rank = {}
            for key, val in state_dict.items():
                if "lora_B" in key:
                    rank[key] = val.shape[1]

            lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict, is_unet=True)
            if "use_dora" in lora_config_kwargs:
                if lora_config_kwargs["use_dora"]:
                    if is_peft_version("<", "0.9.0"):
                        raise ValueError(
                            "You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
                        )
                else:
                    if is_peft_version("<", "0.9.0"):
                        lora_config_kwargs.pop("use_dora")
            lora_config = LoraConfig(**lora_config_kwargs)

            # adapter_name
            if adapter_name is None:
                adapter_name = get_adapter_name(self)

            # In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
            # otherwise loading LoRA weights will lead to an error
            is_model_cpu_offload, is_sequential_cpu_offload = self._optionally_disable_offloading(_pipeline)
350
351
352
            peft_kwargs = {}
            if is_peft_version(">=", "0.13.1"):
                peft_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
353

354
355
            inject_adapter_in_model(lora_config, self, adapter_name=adapter_name, **peft_kwargs)
            incompatible_keys = set_peft_model_state_dict(self, state_dict, adapter_name, **peft_kwargs)
356
357
358
359
360
361
362
363
364

            if incompatible_keys is not None:
                # check only for unexpected keys
                unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
                if unexpected_keys:
                    logger.warning(
                        f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
                        f" {unexpected_keys}. "
                    )
365

366
        return is_model_cpu_offload, is_sequential_cpu_offload
367

368
    @classmethod
369
    # Copied from diffusers.loaders.lora_base.LoraBaseMixin._optionally_disable_offloading
370
371
372
    def _optionally_disable_offloading(cls, _pipeline):
        """
        Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU.
373

374
375
376
        Args:
            _pipeline (`DiffusionPipeline`):
                The pipeline to disable offloading for.
377

378
379
380
381
382
383
        Returns:
            tuple:
                A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True.
        """
        is_model_cpu_offload = False
        is_sequential_cpu_offload = False
384

385
386
387
388
389
390
391
392
393
394
395
        if _pipeline is not None and _pipeline.hf_device_map is None:
            for _, component in _pipeline.components.items():
                if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"):
                    if not is_model_cpu_offload:
                        is_model_cpu_offload = isinstance(component._hf_hook, CpuOffload)
                    if not is_sequential_cpu_offload:
                        is_sequential_cpu_offload = (
                            isinstance(component._hf_hook, AlignDevicesHook)
                            or hasattr(component._hf_hook, "hooks")
                            and isinstance(component._hf_hook.hooks[0], AlignDevicesHook)
                        )
396

397
398
399
400
                    logger.info(
                        "Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
                    )
                    remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
401

402
        return (is_model_cpu_offload, is_sequential_cpu_offload)
403
404
405
406
407
408
409
410
411
412
413

    def save_attn_procs(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
        **kwargs,
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
414
        Save attention processor layers to a directory so that it can be reloaded with the
415
416
417
418
        [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method.

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
419
                Directory to save an attention processor to (will be created if it doesn't exist).
420
421
422
423
424
425
426
427
428
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
                Whether to save the model using `safetensors` or with `pickle`.

        Example:

        ```py
        import torch
        from diffusers import DiffusionPipeline

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            torch_dtype=torch.float16,
        ).to("cuda")
        pipeline.unet.load_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin")
        pipeline.unet.save_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin")
        ```
444
445
446
447
448
449
450
451
452
453
454
        """
        from ..models.attention_processor import (
            CustomDiffusionAttnProcessor,
            CustomDiffusionAttnProcessor2_0,
            CustomDiffusionXFormersAttnProcessor,
        )

        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

455
456
457
458
459
460
461
462
463
        is_custom_diffusion = any(
            isinstance(
                x,
                (CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor),
            )
            for (_, x) in self.attn_processors.items()
        )
        if is_custom_diffusion:
            state_dict = self._get_custom_diffusion_state_dict()
464
465
466
467
468
469
470
471
472
            if save_function is None and safe_serialization:
                # safetensors does not support saving dicts with non-tensor values
                empty_state_dict = {k: v for k, v in state_dict.items() if not isinstance(v, torch.Tensor)}
                if len(empty_state_dict) > 0:
                    logger.warning(
                        f"Safetensors does not support saving dicts with non-tensor values. "
                        f"The following keys will be ignored: {empty_state_dict.keys()}"
                    )
                state_dict = {k: v for k, v in state_dict.items() if isinstance(v, torch.Tensor)}
473
474
475
476
477
478
479
480
        else:
            if not USE_PEFT_BACKEND:
                raise ValueError("PEFT backend is required for saving LoRAs using the `save_attn_procs()` method.")

            from peft.utils import get_peft_model_state_dict

            state_dict = get_peft_model_state_dict(self)

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
        if save_function is None:
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save

        os.makedirs(save_directory, exist_ok=True)

        if weight_name is None:
            if safe_serialization:
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
            else:
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME

        # Save the model
gzguevara's avatar
gzguevara committed
499
500
501
        save_path = Path(save_directory, weight_name).as_posix()
        save_function(state_dict, save_path)
        logger.info(f"Model weights saved in {save_path}")
502

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
    def _get_custom_diffusion_state_dict(self):
        from ..models.attention_processor import (
            CustomDiffusionAttnProcessor,
            CustomDiffusionAttnProcessor2_0,
            CustomDiffusionXFormersAttnProcessor,
        )

        model_to_save = AttnProcsLayers(
            {
                y: x
                for (y, x) in self.attn_processors.items()
                if isinstance(
                    x,
                    (
                        CustomDiffusionAttnProcessor,
                        CustomDiffusionAttnProcessor2_0,
                        CustomDiffusionXFormersAttnProcessor,
                    ),
                )
            }
        )
        state_dict = model_to_save.state_dict()
        for name, attn in self.attn_processors.items():
            if len(attn.state_dict()) == 0:
                state_dict[name] = {}

        return state_dict

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
    def _convert_ip_adapter_image_proj_to_diffusers(self, state_dict, low_cpu_mem_usage=False):
        if low_cpu_mem_usage:
            if is_accelerate_available():
                from accelerate import init_empty_weights

            else:
                low_cpu_mem_usage = False
                logger.warning(
                    "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                    " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                    " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                    " install accelerate\n```\n."
                )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

551
552
        updated_state_dict = {}
        image_projection = None
553
        init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
554
555
556
557
558
559
560

        if "proj.weight" in state_dict:
            # IP-Adapter
            num_image_text_embeds = 4
            clip_embeddings_dim = state_dict["proj.weight"].shape[-1]
            cross_attention_dim = state_dict["proj.weight"].shape[0] // 4

561
562
563
564
565
566
            with init_context():
                image_projection = ImageProjection(
                    cross_attention_dim=cross_attention_dim,
                    image_embed_dim=clip_embeddings_dim,
                    num_image_text_embeds=num_image_text_embeds,
                )
567
568
569
570
571
572
573
574
575
576

            for key, value in state_dict.items():
                diffusers_name = key.replace("proj", "image_embeds")
                updated_state_dict[diffusers_name] = value

        elif "proj.3.weight" in state_dict:
            # IP-Adapter Full
            clip_embeddings_dim = state_dict["proj.0.weight"].shape[0]
            cross_attention_dim = state_dict["proj.3.weight"].shape[0]

577
578
579
580
            with init_context():
                image_projection = IPAdapterFullImageProjection(
                    cross_attention_dim=cross_attention_dim, image_embed_dim=clip_embeddings_dim
                )
581
582
583
584
585
586
587

            for key, value in state_dict.items():
                diffusers_name = key.replace("proj.0", "ff.net.0.proj")
                diffusers_name = diffusers_name.replace("proj.2", "ff.net.2")
                diffusers_name = diffusers_name.replace("proj.3", "norm")
                updated_state_dict[diffusers_name] = value

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
        elif "perceiver_resampler.proj_in.weight" in state_dict:
            # IP-Adapter Face ID Plus
            id_embeddings_dim = state_dict["proj.0.weight"].shape[1]
            embed_dims = state_dict["perceiver_resampler.proj_in.weight"].shape[0]
            hidden_dims = state_dict["perceiver_resampler.proj_in.weight"].shape[1]
            output_dims = state_dict["perceiver_resampler.proj_out.weight"].shape[0]
            heads = state_dict["perceiver_resampler.layers.0.0.to_q.weight"].shape[0] // 64

            with init_context():
                image_projection = IPAdapterFaceIDPlusImageProjection(
                    embed_dims=embed_dims,
                    output_dims=output_dims,
                    hidden_dims=hidden_dims,
                    heads=heads,
                    id_embeddings_dim=id_embeddings_dim,
                )

            for key, value in state_dict.items():
                diffusers_name = key.replace("perceiver_resampler.", "")
                diffusers_name = diffusers_name.replace("0.to", "attn.to")
                diffusers_name = diffusers_name.replace("0.1.0.", "0.ff.0.")
                diffusers_name = diffusers_name.replace("0.1.1.weight", "0.ff.1.net.0.proj.weight")
                diffusers_name = diffusers_name.replace("0.1.3.weight", "0.ff.1.net.2.weight")
                diffusers_name = diffusers_name.replace("1.1.0.", "1.ff.0.")
                diffusers_name = diffusers_name.replace("1.1.1.weight", "1.ff.1.net.0.proj.weight")
                diffusers_name = diffusers_name.replace("1.1.3.weight", "1.ff.1.net.2.weight")
                diffusers_name = diffusers_name.replace("2.1.0.", "2.ff.0.")
                diffusers_name = diffusers_name.replace("2.1.1.weight", "2.ff.1.net.0.proj.weight")
                diffusers_name = diffusers_name.replace("2.1.3.weight", "2.ff.1.net.2.weight")
                diffusers_name = diffusers_name.replace("3.1.0.", "3.ff.0.")
                diffusers_name = diffusers_name.replace("3.1.1.weight", "3.ff.1.net.0.proj.weight")
                diffusers_name = diffusers_name.replace("3.1.3.weight", "3.ff.1.net.2.weight")
                diffusers_name = diffusers_name.replace("layers.0.0", "layers.0.ln0")
                diffusers_name = diffusers_name.replace("layers.0.1", "layers.0.ln1")
                diffusers_name = diffusers_name.replace("layers.1.0", "layers.1.ln0")
                diffusers_name = diffusers_name.replace("layers.1.1", "layers.1.ln1")
                diffusers_name = diffusers_name.replace("layers.2.0", "layers.2.ln0")
                diffusers_name = diffusers_name.replace("layers.2.1", "layers.2.ln1")
                diffusers_name = diffusers_name.replace("layers.3.0", "layers.3.ln0")
                diffusers_name = diffusers_name.replace("layers.3.1", "layers.3.ln1")

                if "norm1" in diffusers_name:
                    updated_state_dict[diffusers_name.replace("0.norm1", "0")] = value
                elif "norm2" in diffusers_name:
                    updated_state_dict[diffusers_name.replace("0.norm2", "1")] = value
                elif "to_kv" in diffusers_name:
                    v_chunk = value.chunk(2, dim=0)
                    updated_state_dict[diffusers_name.replace("to_kv", "to_k")] = v_chunk[0]
                    updated_state_dict[diffusers_name.replace("to_kv", "to_v")] = v_chunk[1]
                elif "to_out" in diffusers_name:
                    updated_state_dict[diffusers_name.replace("to_out", "to_out.0")] = value
                elif "proj.0.weight" == diffusers_name:
                    updated_state_dict["proj.net.0.proj.weight"] = value
                elif "proj.0.bias" == diffusers_name:
                    updated_state_dict["proj.net.0.proj.bias"] = value
                elif "proj.2.weight" == diffusers_name:
                    updated_state_dict["proj.net.2.weight"] = value
                elif "proj.2.bias" == diffusers_name:
                    updated_state_dict["proj.net.2.bias"] = value
                else:
                    updated_state_dict[diffusers_name] = value

        elif "norm.weight" in state_dict:
            # IP-Adapter Face ID
            id_embeddings_dim_in = state_dict["proj.0.weight"].shape[1]
            id_embeddings_dim_out = state_dict["proj.0.weight"].shape[0]
            multiplier = id_embeddings_dim_out // id_embeddings_dim_in
            norm_layer = "norm.weight"
            cross_attention_dim = state_dict[norm_layer].shape[0]
            num_tokens = state_dict["proj.2.weight"].shape[0] // cross_attention_dim

            with init_context():
                image_projection = IPAdapterFaceIDImageProjection(
                    cross_attention_dim=cross_attention_dim,
                    image_embed_dim=id_embeddings_dim_in,
                    mult=multiplier,
                    num_tokens=num_tokens,
                )

            for key, value in state_dict.items():
                diffusers_name = key.replace("proj.0", "ff.net.0.proj")
                diffusers_name = diffusers_name.replace("proj.2", "ff.net.2")
                updated_state_dict[diffusers_name] = value

672
673
674
675
676
677
        else:
            # IP-Adapter Plus
            num_image_text_embeds = state_dict["latents"].shape[1]
            embed_dims = state_dict["proj_in.weight"].shape[1]
            output_dims = state_dict["proj_out.weight"].shape[0]
            hidden_dims = state_dict["latents"].shape[2]
678
679
680
681
682
683
            attn_key_present = any("attn" in k for k in state_dict)
            heads = (
                state_dict["layers.0.attn.to_q.weight"].shape[0] // 64
                if attn_key_present
                else state_dict["layers.0.0.to_q.weight"].shape[0] // 64
            )
684

685
686
687
688
689
690
691
692
            with init_context():
                image_projection = IPAdapterPlusImageProjection(
                    embed_dims=embed_dims,
                    output_dims=output_dims,
                    hidden_dims=hidden_dims,
                    heads=heads,
                    num_queries=num_image_text_embeds,
                )
693
694
695
696

            for key, value in state_dict.items():
                diffusers_name = key.replace("0.to", "2.to")

697
698
699
700
701
702
703
704
705
706
707
708
709
                diffusers_name = diffusers_name.replace("0.0.norm1", "0.ln0")
                diffusers_name = diffusers_name.replace("0.0.norm2", "0.ln1")
                diffusers_name = diffusers_name.replace("1.0.norm1", "1.ln0")
                diffusers_name = diffusers_name.replace("1.0.norm2", "1.ln1")
                diffusers_name = diffusers_name.replace("2.0.norm1", "2.ln0")
                diffusers_name = diffusers_name.replace("2.0.norm2", "2.ln1")
                diffusers_name = diffusers_name.replace("3.0.norm1", "3.ln0")
                diffusers_name = diffusers_name.replace("3.0.norm2", "3.ln1")

                if "to_kv" in diffusers_name:
                    parts = diffusers_name.split(".")
                    parts[2] = "attn"
                    diffusers_name = ".".join(parts)
710
711
712
                    v_chunk = value.chunk(2, dim=0)
                    updated_state_dict[diffusers_name.replace("to_kv", "to_k")] = v_chunk[0]
                    updated_state_dict[diffusers_name.replace("to_kv", "to_v")] = v_chunk[1]
713
714
715
716
717
                elif "to_q" in diffusers_name:
                    parts = diffusers_name.split(".")
                    parts[2] = "attn"
                    diffusers_name = ".".join(parts)
                    updated_state_dict[diffusers_name] = value
718
                elif "to_out" in diffusers_name:
719
720
721
                    parts = diffusers_name.split(".")
                    parts[2] = "attn"
                    diffusers_name = ".".join(parts)
722
723
                    updated_state_dict[diffusers_name.replace("to_out", "to_out.0")] = value
                else:
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
                    diffusers_name = diffusers_name.replace("0.1.0", "0.ff.0")
                    diffusers_name = diffusers_name.replace("0.1.1", "0.ff.1.net.0.proj")
                    diffusers_name = diffusers_name.replace("0.1.3", "0.ff.1.net.2")

                    diffusers_name = diffusers_name.replace("1.1.0", "1.ff.0")
                    diffusers_name = diffusers_name.replace("1.1.1", "1.ff.1.net.0.proj")
                    diffusers_name = diffusers_name.replace("1.1.3", "1.ff.1.net.2")

                    diffusers_name = diffusers_name.replace("2.1.0", "2.ff.0")
                    diffusers_name = diffusers_name.replace("2.1.1", "2.ff.1.net.0.proj")
                    diffusers_name = diffusers_name.replace("2.1.3", "2.ff.1.net.2")

                    diffusers_name = diffusers_name.replace("3.1.0", "3.ff.0")
                    diffusers_name = diffusers_name.replace("3.1.1", "3.ff.1.net.0.proj")
                    diffusers_name = diffusers_name.replace("3.1.3", "3.ff.1.net.2")
739
740
                    updated_state_dict[diffusers_name] = value

741
        if not low_cpu_mem_usage:
742
            image_projection.load_state_dict(updated_state_dict, strict=True)
743
744
745
        else:
            load_model_dict_into_meta(image_projection, updated_state_dict, device=self.device, dtype=self.dtype)

746
747
        return image_projection

748
    def _convert_ip_adapter_attn_to_diffusers(self, state_dicts, low_cpu_mem_usage=False):
749
750
751
752
753
        from ..models.attention_processor import (
            IPAdapterAttnProcessor,
            IPAdapterAttnProcessor2_0,
        )

754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
        if low_cpu_mem_usage:
            if is_accelerate_available():
                from accelerate import init_empty_weights

            else:
                low_cpu_mem_usage = False
                logger.warning(
                    "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                    " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                    " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                    " install accelerate\n```\n."
                )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

773
774
775
        # set ip-adapter cross-attention processors & load state_dict
        attn_procs = {}
        key_id = 1
776
        init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
777
778
779
780
781
782
783
784
785
786
        for name in self.attn_processors.keys():
            cross_attention_dim = None if name.endswith("attn1.processor") else self.config.cross_attention_dim
            if name.startswith("mid_block"):
                hidden_size = self.config.block_out_channels[-1]
            elif name.startswith("up_blocks"):
                block_id = int(name[len("up_blocks.")])
                hidden_size = list(reversed(self.config.block_out_channels))[block_id]
            elif name.startswith("down_blocks"):
                block_id = int(name[len("down_blocks.")])
                hidden_size = self.config.block_out_channels[block_id]
787

788
            if cross_attention_dim is None or "motion_modules" in name:
YiYi Xu's avatar
YiYi Xu committed
789
                attn_processor_class = self.attn_processors[name].__class__
790
                attn_procs[name] = attn_processor_class()
791

792
793
794
795
            else:
                attn_processor_class = (
                    IPAdapterAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else IPAdapterAttnProcessor
                )
796
797
798
799
800
801
802
803
                num_image_text_embeds = []
                for state_dict in state_dicts:
                    if "proj.weight" in state_dict["image_proj"]:
                        # IP-Adapter
                        num_image_text_embeds += [4]
                    elif "proj.3.weight" in state_dict["image_proj"]:
                        # IP-Adapter Full Face
                        num_image_text_embeds += [257]  # 256 CLIP tokens + 1 CLS token
804
805
806
807
808
809
                    elif "perceiver_resampler.proj_in.weight" in state_dict["image_proj"]:
                        # IP-Adapter Face ID Plus
                        num_image_text_embeds += [4]
                    elif "norm.weight" in state_dict["image_proj"]:
                        # IP-Adapter Face ID
                        num_image_text_embeds += [4]
810
811
812
813
                    else:
                        # IP-Adapter Plus
                        num_image_text_embeds += [state_dict["image_proj"]["latents"].shape[1]]

814
815
816
817
818
819
820
                with init_context():
                    attn_procs[name] = attn_processor_class(
                        hidden_size=hidden_size,
                        cross_attention_dim=cross_attention_dim,
                        scale=1.0,
                        num_tokens=num_image_text_embeds,
                    )
821
822

                value_dict = {}
823
824
825
                for i, state_dict in enumerate(state_dicts):
                    value_dict.update({f"to_k_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_k_ip.weight"]})
                    value_dict.update({f"to_v_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_v_ip.weight"]})
826

827
828
829
830
831
832
833
                if not low_cpu_mem_usage:
                    attn_procs[name].load_state_dict(value_dict)
                else:
                    device = next(iter(value_dict.values())).device
                    dtype = next(iter(value_dict.values())).dtype
                    load_model_dict_into_meta(attn_procs[name], value_dict, device=device, dtype=dtype)

834
835
                key_id += 2

836
837
        return attn_procs

838
    def _load_ip_adapter_weights(self, state_dicts, low_cpu_mem_usage=False):
839
840
        if not isinstance(state_dicts, list):
            state_dicts = [state_dicts]
841
842
843
844
845
846
847
848
849

        # Kolors Unet already has a `encoder_hid_proj`
        if (
            self.encoder_hid_proj is not None
            and self.config.encoder_hid_dim_type == "text_proj"
            and not hasattr(self, "text_encoder_hid_proj")
        ):
            self.text_encoder_hid_proj = self.encoder_hid_proj

850
851
852
853
        # Set encoder_hid_proj after loading ip_adapter weights,
        # because `IPAdapterPlusImageProjection` also has `attn_processors`.
        self.encoder_hid_proj = None

854
        attn_procs = self._convert_ip_adapter_attn_to_diffusers(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
855
856
        self.set_attn_processor(attn_procs)

857
        # convert IP-Adapter Image Projection layers to diffusers
858
859
        image_projection_layers = []
        for state_dict in state_dicts:
860
861
862
            image_projection_layer = self._convert_ip_adapter_image_proj_to_diffusers(
                state_dict["image_proj"], low_cpu_mem_usage=low_cpu_mem_usage
            )
863
            image_projection_layers.append(image_projection_layer)
864

865
        self.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers)
866
        self.config.encoder_hid_dim_type = "ip_image_proj"
867
868

        self.to(dtype=self.dtype, device=self.device)
869

870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
    def _load_ip_adapter_loras(self, state_dicts):
        lora_dicts = {}
        for key_id, name in enumerate(self.attn_processors.keys()):
            for i, state_dict in enumerate(state_dicts):
                if f"{key_id}.to_k_lora.down.weight" in state_dict["ip_adapter"]:
                    if i not in lora_dicts:
                        lora_dicts[i] = {}
                    lora_dicts[i].update(
                        {
                            f"unet.{name}.to_k_lora.down.weight": state_dict["ip_adapter"][
                                f"{key_id}.to_k_lora.down.weight"
                            ]
                        }
                    )
                    lora_dicts[i].update(
                        {
                            f"unet.{name}.to_q_lora.down.weight": state_dict["ip_adapter"][
                                f"{key_id}.to_q_lora.down.weight"
                            ]
                        }
                    )
                    lora_dicts[i].update(
                        {
                            f"unet.{name}.to_v_lora.down.weight": state_dict["ip_adapter"][
                                f"{key_id}.to_v_lora.down.weight"
                            ]
                        }
                    )
                    lora_dicts[i].update(
                        {
                            f"unet.{name}.to_out_lora.down.weight": state_dict["ip_adapter"][
                                f"{key_id}.to_out_lora.down.weight"
                            ]
                        }
                    )
                    lora_dicts[i].update(
                        {f"unet.{name}.to_k_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_k_lora.up.weight"]}
                    )
                    lora_dicts[i].update(
                        {f"unet.{name}.to_q_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_q_lora.up.weight"]}
                    )
                    lora_dicts[i].update(
                        {f"unet.{name}.to_v_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_v_lora.up.weight"]}
                    )
                    lora_dicts[i].update(
                        {
                            f"unet.{name}.to_out_lora.up.weight": state_dict["ip_adapter"][
                                f"{key_id}.to_out_lora.up.weight"
                            ]
                        }
                    )
        return lora_dicts