unet.py 29.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from collections import defaultdict
from contextlib import nullcontext
from typing import Callable, Dict, List, Optional, Union

import safetensors
import torch
from torch import nn

from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta
from ..utils import (
    DIFFUSERS_CACHE,
    HF_HUB_OFFLINE,
    USE_PEFT_BACKEND,
    _get_model_file,
    delete_adapter_layers,
    is_accelerate_available,
    logging,
    set_adapter_layers,
    set_weights_and_activate_adapters,
)
from .utils import AttnProcsLayers


if is_accelerate_available():
    from accelerate import init_empty_weights
    from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module

logger = logging.get_logger(__name__)


TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"

LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"

CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"


class UNet2DConditionLoadersMixin:
Steven Liu's avatar
Steven Liu committed
56
57
58
59
    """
    Load LoRA layers into a [`UNet2DCondtionModel`].
    """

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME

    def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        r"""
        Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
        defined in
        [`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py)
        and be a `torch.nn.Module` class.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a directory (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
            mirror (`str`, *optional*):
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.

Steven Liu's avatar
Steven Liu committed
114
115
116
117
118
119
120
121
122
123
124
125
126
        Example:

        ```py
        from diffusers import AutoPipelineForText2Image
        import torch

        pipeline = AutoPipelineForText2Image.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.unet.load_attn_procs(
            "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
        )
        ```
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
        """
        from ..models.attention_processor import CustomDiffusionAttnProcessor
        from ..models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer

        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
        network_alphas = kwargs.pop("network_alphas", None)

        _pipeline = kwargs.pop("_pipeline", None)

        is_network_alphas_none = network_alphas is None

        allow_pickle = False

        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        model_file = None
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
            # Let's first try to load .safetensors weights
            if (use_safetensors and weight_name is None) or (
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
                except IOError as e:
                    if not allow_pickle:
                        raise e
                    # try loading non-safetensors weights
                    pass
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
                    weights_name=weight_name or LORA_WEIGHT_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = torch.load(model_file, map_location="cpu")
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        # fill attn processors
        lora_layers_list = []

        is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys()) and not USE_PEFT_BACKEND
        is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())

        if is_lora:
            # correct keys
            state_dict, network_alphas = self.convert_state_dict_legacy_attn_format(state_dict, network_alphas)

            if network_alphas is not None:
                network_alphas_keys = list(network_alphas.keys())
                used_network_alphas_keys = set()

            lora_grouped_dict = defaultdict(dict)
            mapped_network_alphas = {}

            all_keys = list(state_dict.keys())
            for key in all_keys:
                value = state_dict.pop(key)
                attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                lora_grouped_dict[attn_processor_key][sub_key] = value

                # Create another `mapped_network_alphas` dictionary so that we can properly map them.
                if network_alphas is not None:
                    for k in network_alphas_keys:
                        if k.replace(".alpha", "") in key:
                            mapped_network_alphas.update({attn_processor_key: network_alphas.get(k)})
                            used_network_alphas_keys.add(k)

            if not is_network_alphas_none:
                if len(set(network_alphas_keys) - used_network_alphas_keys) > 0:
                    raise ValueError(
                        f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
                    )

            if len(state_dict) > 0:
                raise ValueError(
                    f"The `state_dict` has to be empty at this point but has the following keys \n\n {', '.join(state_dict.keys())}"
                )

            for key, value_dict in lora_grouped_dict.items():
                attn_processor = self
                for sub_key in key.split("."):
                    attn_processor = getattr(attn_processor, sub_key)

                # Process non-attention layers, which don't have to_{k,v,q,out_proj}_lora layers
                # or add_{k,v,q,out_proj}_proj_lora layers.
                rank = value_dict["lora.down.weight"].shape[0]

                if isinstance(attn_processor, LoRACompatibleConv):
                    in_features = attn_processor.in_channels
                    out_features = attn_processor.out_channels
                    kernel_size = attn_processor.kernel_size

                    ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
                    with ctx():
                        lora = LoRAConv2dLayer(
                            in_features=in_features,
                            out_features=out_features,
                            rank=rank,
                            kernel_size=kernel_size,
                            stride=attn_processor.stride,
                            padding=attn_processor.padding,
                            network_alpha=mapped_network_alphas.get(key),
                        )
                elif isinstance(attn_processor, LoRACompatibleLinear):
                    ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
                    with ctx():
                        lora = LoRALinearLayer(
                            attn_processor.in_features,
                            attn_processor.out_features,
                            rank,
                            mapped_network_alphas.get(key),
                        )
                else:
                    raise ValueError(f"Module {key} is not a LoRACompatibleConv or LoRACompatibleLinear module.")

                value_dict = {k.replace("lora.", ""): v for k, v in value_dict.items()}
                lora_layers_list.append((attn_processor, lora))

                if low_cpu_mem_usage:
                    device = next(iter(value_dict.values())).device
                    dtype = next(iter(value_dict.values())).dtype
                    load_model_dict_into_meta(lora, value_dict, device=device, dtype=dtype)
                else:
                    lora.load_state_dict(value_dict)

        elif is_custom_diffusion:
            attn_processors = {}
            custom_diffusion_grouped_dict = defaultdict(dict)
            for key, value in state_dict.items():
                if len(value) == 0:
                    custom_diffusion_grouped_dict[key] = {}
                else:
                    if "to_out" in key:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                    else:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
                    custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value

            for key, value_dict in custom_diffusion_grouped_dict.items():
                if len(value_dict) == 0:
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
                    )
                else:
                    cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
                    hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
                    train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=True,
                        train_q_out=train_q_out,
                        hidden_size=hidden_size,
                        cross_attention_dim=cross_attention_dim,
                    )
                    attn_processors[key].load_state_dict(value_dict)
        elif USE_PEFT_BACKEND:
            # In that case we have nothing to do as loading the adapter weights is already handled above by `set_peft_model_state_dict`
            # on the Unet
            pass
        else:
            raise ValueError(
                f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training."
            )

        # <Unsafe code
        # We can be sure that the following works as it just sets attention processors, lora layers and puts all in the same dtype
        # Now we remove any existing hooks to
        is_model_cpu_offload = False
        is_sequential_cpu_offload = False

        # For PEFT backend the Unet is already offloaded at this stage as it is handled inside `lora_lora_weights_into_unet`
        if not USE_PEFT_BACKEND:
            if _pipeline is not None:
                for _, component in _pipeline.components.items():
                    if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"):
                        is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
                        is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)

                        logger.info(
                            "Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
                        )
                        remove_hook_from_module(component, recurse=is_sequential_cpu_offload)

            # only custom diffusion needs to set attn processors
            if is_custom_diffusion:
                self.set_attn_processor(attn_processors)

            # set lora layers
            for target_module, lora_layer in lora_layers_list:
                target_module.set_lora_layer(lora_layer)

            self.to(dtype=self.dtype, device=self.device)

            # Offload back.
            if is_model_cpu_offload:
                _pipeline.enable_model_cpu_offload()
            elif is_sequential_cpu_offload:
                _pipeline.enable_sequential_cpu_offload()
            # Unsafe code />

    def convert_state_dict_legacy_attn_format(self, state_dict, network_alphas):
        is_new_lora_format = all(
            key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys()
        )
        if is_new_lora_format:
            # Strip the `"unet"` prefix.
            is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys())
            if is_text_encoder_present:
                warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)."
                logger.warn(warn_message)
            unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)]
            state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}

        # change processor format to 'pure' LoRACompatibleLinear format
        if any("processor" in k.split(".") for k in state_dict.keys()):

            def format_to_lora_compatible(key):
                if "processor" not in key.split("."):
                    return key
                return key.replace(".processor", "").replace("to_out_lora", "to_out.0.lora").replace("_lora", ".lora")

            state_dict = {format_to_lora_compatible(k): v for k, v in state_dict.items()}

            if network_alphas is not None:
                network_alphas = {format_to_lora_compatible(k): v for k, v in network_alphas.items()}
        return state_dict, network_alphas

    def save_attn_procs(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
        **kwargs,
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
413
        Save attention processor layers to a directory so that it can be reloaded with the
414
415
416
417
        [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method.

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
418
                Directory to save an attention processor to (will be created if it doesn't exist).
419
420
421
422
423
424
425
426
427
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
                Whether to save the model using `safetensors` or with `pickle`.

        Example:

        ```py
        import torch
        from diffusers import DiffusionPipeline

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            torch_dtype=torch.float16,
        ).to("cuda")
        pipeline.unet.load_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin")
        pipeline.unet.save_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin")
        ```
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
        """
        from ..models.attention_processor import (
            CustomDiffusionAttnProcessor,
            CustomDiffusionAttnProcessor2_0,
            CustomDiffusionXFormersAttnProcessor,
        )

        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save

        os.makedirs(save_directory, exist_ok=True)

        is_custom_diffusion = any(
            isinstance(
                x,
                (CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor),
            )
            for (_, x) in self.attn_processors.items()
        )
        if is_custom_diffusion:
            model_to_save = AttnProcsLayers(
                {
                    y: x
                    for (y, x) in self.attn_processors.items()
                    if isinstance(
                        x,
                        (
                            CustomDiffusionAttnProcessor,
                            CustomDiffusionAttnProcessor2_0,
                            CustomDiffusionXFormersAttnProcessor,
                        ),
                    )
                }
            )
            state_dict = model_to_save.state_dict()
            for name, attn in self.attn_processors.items():
                if len(attn.state_dict()) == 0:
                    state_dict[name] = {}
        else:
            model_to_save = AttnProcsLayers(self.attn_processors)
            state_dict = model_to_save.state_dict()

        if weight_name is None:
            if safe_serialization:
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
            else:
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME

        # Save the model
        save_function(state_dict, os.path.join(save_directory, weight_name))
        logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")

    def fuse_lora(self, lora_scale=1.0, safe_fusing=False):
        self.lora_scale = lora_scale
        self._safe_fusing = safe_fusing
        self.apply(self._fuse_lora_apply)

    def _fuse_lora_apply(self, module):
        if not USE_PEFT_BACKEND:
            if hasattr(module, "_fuse_lora"):
                module._fuse_lora(self.lora_scale, self._safe_fusing)
        else:
            from peft.tuners.tuners_utils import BaseTunerLayer

            if isinstance(module, BaseTunerLayer):
                if self.lora_scale != 1.0:
                    module.scale_layer(self.lora_scale)
                module.merge(safe_merge=self._safe_fusing)

    def unfuse_lora(self):
        self.apply(self._unfuse_lora_apply)

    def _unfuse_lora_apply(self, module):
        if not USE_PEFT_BACKEND:
            if hasattr(module, "_unfuse_lora"):
                module._unfuse_lora()
        else:
            from peft.tuners.tuners_utils import BaseTunerLayer

            if isinstance(module, BaseTunerLayer):
                module.unmerge()

    def set_adapters(
        self,
        adapter_names: Union[List[str], str],
        weights: Optional[Union[List[float], float]] = None,
    ):
        """
Steven Liu's avatar
Steven Liu committed
541
        Set the currently active adapters for use in the UNet.
542
543
544
545

        Args:
            adapter_names (`List[str]` or `str`):
                The names of the adapters to use.
Steven Liu's avatar
Steven Liu committed
546
            adapter_weights (`Union[List[float], float]`, *optional*):
547
548
                The adapter(s) weights to use with the UNet. If `None`, the weights are set to `1.0` for all the
                adapters.
Steven Liu's avatar
Steven Liu committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

        Example:

        ```py
        from diffusers import AutoPipelineForText2Image
        import torch

        pipeline = AutoPipelineForText2Image.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights(
            "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
        )
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.set_adapters(["cinematic", "pixel"], adapter_weights=[0.5, 0.5])
        ```
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for `set_adapters()`.")

        adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names

        if weights is None:
            weights = [1.0] * len(adapter_names)
        elif isinstance(weights, float):
            weights = [weights] * len(adapter_names)

        if len(adapter_names) != len(weights):
            raise ValueError(
                f"Length of adapter names {len(adapter_names)} is not equal to the length of their weights {len(weights)}."
            )

        set_weights_and_activate_adapters(self, adapter_names, weights)

    def disable_lora(self):
        """
Steven Liu's avatar
Steven Liu committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
        Disable the UNet's active LoRA layers.

        Example:

        ```py
        from diffusers import AutoPipelineForText2Image
        import torch

        pipeline = AutoPipelineForText2Image.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights(
            "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
        )
        pipeline.disable_lora()
        ```
601
602
603
604
605
606
607
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")
        set_adapter_layers(self, enabled=False)

    def enable_lora(self):
        """
Steven Liu's avatar
Steven Liu committed
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
        Enable the UNet's active LoRA layers.

        Example:

        ```py
        from diffusers import AutoPipelineForText2Image
        import torch

        pipeline = AutoPipelineForText2Image.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights(
            "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
        )
        pipeline.enable_lora()
        ```
624
625
626
627
628
629
630
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")
        set_adapter_layers(self, enabled=True)

    def delete_adapters(self, adapter_names: Union[List[str], str]):
        """
Steven Liu's avatar
Steven Liu committed
631
632
        Delete an adapter's LoRA layers from the UNet.

633
634
        Args:
            adapter_names (`Union[List[str], str]`):
Steven Liu's avatar
Steven Liu committed
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
                The names (single string or list of strings) of the adapter to delete.

        Example:

        ```py
        from diffusers import AutoPipelineForText2Image
        import torch

        pipeline = AutoPipelineForText2Image.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights(
            "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_names="cinematic"
        )
        pipeline.delete_adapters("cinematic")
        ```
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        if isinstance(adapter_names, str):
            adapter_names = [adapter_names]

        for adapter_name in adapter_names:
            delete_adapter_layers(self, adapter_name)

            # Pop also the corresponding adapter from the config
            if hasattr(self, "peft_config"):
                self.peft_config.pop(adapter_name, None)

    delete_adapter_layers