scheduling_lms_discrete.py 11.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import warnings
15
from dataclasses import dataclass
16
from typing import Optional, Tuple, Union
17
18
19
20
21
22
23

import numpy as np
import torch

from scipy import integrate

from ..configuration_utils import ConfigMixin, register_to_config
Anton Lozhkov's avatar
Anton Lozhkov committed
24
from ..utils import BaseOutput
25
26
27
28
from .scheduling_utils import SchedulerMixin


@dataclass
29
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->LMSDiscrete
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
class LMSDiscreteSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46
47


class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
48
49
50
51
52
    """
    Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by
    Katherine Crowson:
    https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181

53
54
55
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
56
    [`~ConfigMixin.from_config`] functions.
57

58
59
60
61
62
63
64
    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear` or `scaled_linear`.
Nathan Lambert's avatar
Nathan Lambert committed
65
66
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
67
68
69

    """

70
71
72
73
74
75
76
77
    _compatible_classes = [
        "DDIMScheduler",
        "DDPMScheduler",
        "PNDMScheduler",
        "EulerDiscreteScheduler",
        "EulerAncestralDiscreteScheduler",
    ]

78
79
80
    @register_to_config
    def __init__(
        self,
81
82
83
84
85
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
86
    ):
87
        if trained_betas is not None:
88
            self.betas = torch.from_numpy(trained_betas)
89
        elif beta_schedule == "linear":
90
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
91
92
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
93
94
95
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
96
97
98
99
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
100
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
101

102
103
104
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas)
105

106
107
108
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = self.sigmas.max()

109
110
        # setable values
        self.num_inference_steps = None
111
112
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
113
        self.derivatives = []
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        self.is_scale_input_called = False

    def scale_model_input(
        self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
    ) -> torch.FloatTensor:
        """
        Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)
        step_index = (self.timesteps == timestep).nonzero().item()
        sigma = self.sigmas[step_index]
        sample = sample / ((sigma**2 + 1) ** 0.5)
        self.is_scale_input_called = True
        return sample
136
137
138

    def get_lms_coefficient(self, order, t, current_order):
        """
139
140
141
142
143
144
        Compute a linear multistep coefficient.

        Args:
            order (TODO):
            t (TODO):
            current_order (TODO):
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        """

        def lms_derivative(tau):
            prod = 1.0
            for k in range(order):
                if current_order == k:
                    continue
                prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k])
            return prod

        integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0]

        return integrated_coeff

159
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
160
161
162
163
164
165
        """
        Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
166
167
            device (`str` or `torch.device`, optional):
                the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
168
        """
169
170
        self.num_inference_steps = num_inference_steps

171
        timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy()
172
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
173
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
174
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
175
176
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
        self.timesteps = torch.from_numpy(timesteps).to(device=device)
177
178
179
180
181

        self.derivatives = []

    def step(
        self,
182
        model_output: torch.FloatTensor,
183
        timestep: Union[float, torch.FloatTensor],
184
        sample: torch.FloatTensor,
185
        order: int = 4,
186
        return_dict: bool = True,
187
    ) -> Union[LMSDiscreteSchedulerOutput, Tuple]:
188
189
190
191
192
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
193
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
194
            timestep (`float`): current timestep in the diffusion chain.
195
            sample (`torch.FloatTensor`):
196
197
                current instance of sample being created by diffusion process.
            order: coefficient for multi-step inference.
198
            return_dict (`bool`): option for returning tuple rather than LMSDiscreteSchedulerOutput class
199
200

        Returns:
201
202
203
            [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
            When returning a tuple, the first element is the sample tensor.
204
205

        """
206
207
208
209
210
211
212
213
        if not self.is_scale_input_called:
            warnings.warn(
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)
Anton Lozhkov's avatar
Anton Lozhkov committed
214
        step_index = (self.timesteps == timestep).nonzero().item()
215
        sigma = self.sigmas[step_index]
216
217
218
219
220
221
222
223
224
225
226

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
        pred_original_sample = sample - sigma * model_output

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma
        self.derivatives.append(derivative)
        if len(self.derivatives) > order:
            self.derivatives.pop(0)

        # 3. Compute linear multistep coefficients
227
228
        order = min(step_index + 1, order)
        lms_coeffs = [self.get_lms_coefficient(order, step_index, curr_order) for curr_order in range(order)]
229
230
231
232
233
234

        # 4. Compute previous sample based on the derivatives path
        prev_sample = sample + sum(
            coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives))
        )

235
236
237
        if not return_dict:
            return (prev_sample,)

238
        return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
239

240
241
    def add_noise(
        self,
242
243
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
244
        timesteps: torch.FloatTensor,
245
    ) -> torch.FloatTensor:
246
247
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        self.sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
248
249
250
251
252
253
254
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            self.timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            self.timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
255
256

        schedule_timesteps = self.timesteps
Anton Lozhkov's avatar
Anton Lozhkov committed
257
        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
258

259
        sigma = self.sigmas[step_indices].flatten()
260
261
262
263
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
264
265
266
267
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps