textual_inversion.py 39.6 KB
Newer Older
1
2
#!/usr/bin/env python
# coding=utf-8
3
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

Suraj Patil's avatar
Suraj Patil committed
16
import argparse
Suraj Patil's avatar
Suraj Patil committed
17
import logging
Suraj Patil's avatar
Suraj Patil committed
18
19
20
import math
import os
import random
21
import shutil
22
import warnings
23
from contextlib import nullcontext
Suraj Patil's avatar
Suraj Patil committed
24
25
26
from pathlib import Path

import numpy as np
27
import PIL
28
import safetensors
Suraj Patil's avatar
Suraj Patil committed
29
30
31
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
Suraj Patil's avatar
Suraj Patil committed
32
import transformers
Suraj Patil's avatar
Suraj Patil committed
33
34
from accelerate import Accelerator
from accelerate.logging import get_logger
35
from accelerate.utils import ProjectConfiguration, set_seed
36
from huggingface_hub import create_repo, upload_folder
37
38
39
40
41
42
43
44
45
46

# TODO: remove and import from diffusers.utils when the new version of diffusers is released
from packaging import version
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer

import diffusers
47
48
49
50
51
52
53
54
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DiffusionPipeline,
    DPMSolverMultistepScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
)
Suraj Patil's avatar
Suraj Patil committed
55
from diffusers.optimization import get_scheduler
56
from diffusers.utils import check_min_version, is_wandb_available
57
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
58
from diffusers.utils.import_utils import is_xformers_available
Suraj Patil's avatar
Suraj Patil committed
59

Patrick von Platen's avatar
Patrick von Platen committed
60

61
62
63
if is_wandb_available():
    import wandb

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
    PIL_INTERPOLATION = {
        "linear": PIL.Image.Resampling.BILINEAR,
        "bilinear": PIL.Image.Resampling.BILINEAR,
        "bicubic": PIL.Image.Resampling.BICUBIC,
        "lanczos": PIL.Image.Resampling.LANCZOS,
        "nearest": PIL.Image.Resampling.NEAREST,
    }
else:
    PIL_INTERPOLATION = {
        "linear": PIL.Image.LINEAR,
        "bilinear": PIL.Image.BILINEAR,
        "bicubic": PIL.Image.BICUBIC,
        "lanczos": PIL.Image.LANCZOS,
        "nearest": PIL.Image.NEAREST,
    }
# ------------------------------------------------------------------------------

Suraj Patil's avatar
Suraj Patil committed
82

83
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
Sayak Paul's avatar
Sayak Paul committed
84
check_min_version("0.30.0.dev0")
85

Suraj Patil's avatar
Suraj Patil committed
86
87
88
logger = get_logger(__name__)


89
def save_model_card(repo_id: str, images: list = None, base_model: str = None, repo_folder: str = None):
90
    img_str = ""
91
92
93
94
95
    if images is not None:
        for i, image in enumerate(images):
            image.save(os.path.join(repo_folder, f"image_{i}.png"))
            img_str += f"![img_{i}](./image_{i}.png)\n"
    model_description = f"""
96
97
98
99
# Textual inversion text2image fine-tuning - {repo_id}
These are textual inversion adaption weights for {base_model}. You can find some example images in the following. \n
{img_str}
"""
100
101
102
103
104
105
106
107
108
    model_card = load_or_create_model_card(
        repo_id_or_path=repo_id,
        from_training=True,
        license="creativeml-openrail-m",
        base_model=base_model,
        model_description=model_description,
        inference=True,
    )

109
110
111
112
113
114
115
116
    tags = [
        "stable-diffusion",
        "stable-diffusion-diffusers",
        "text-to-image",
        "diffusers",
        "textual_inversion",
        "diffusers-training",
    ]
117
118
119
    model_card = populate_model_card(model_card, tags=tags)

    model_card.save(os.path.join(repo_folder, "README.md"))
120
121


122
123
124
125
126
127
128
129
130
131
132
133
def log_validation(text_encoder, tokenizer, unet, vae, args, accelerator, weight_dtype, epoch):
    logger.info(
        f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
        f" {args.validation_prompt}."
    )
    # create pipeline (note: unet and vae are loaded again in float32)
    pipeline = DiffusionPipeline.from_pretrained(
        args.pretrained_model_name_or_path,
        text_encoder=accelerator.unwrap_model(text_encoder),
        tokenizer=tokenizer,
        unet=unet,
        vae=vae,
134
        safety_checker=None,
135
        revision=args.revision,
136
        variant=args.variant,
137
138
139
140
141
142
143
144
145
146
        torch_dtype=weight_dtype,
    )
    pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
    pipeline = pipeline.to(accelerator.device)
    pipeline.set_progress_bar_config(disable=True)

    # run inference
    generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed)
    images = []
    for _ in range(args.num_validation_images):
147
148
149
150
151
152
        if torch.backends.mps.is_available():
            autocast_ctx = nullcontext()
        else:
            autocast_ctx = torch.autocast(accelerator.device.type)

        with autocast_ctx:
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
            image = pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0]
        images.append(image)

    for tracker in accelerator.trackers:
        if tracker.name == "tensorboard":
            np_images = np.stack([np.asarray(img) for img in images])
            tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
        if tracker.name == "wandb":
            tracker.log(
                {
                    "validation": [
                        wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images)
                    ]
                }
            )

    del pipeline
    torch.cuda.empty_cache()
171
    return images
172
173


174
def save_progress(text_encoder, placeholder_token_ids, accelerator, args, save_path, safe_serialization=True):
175
    logger.info("Saving embeddings")
176
177
178
179
180
    learned_embeds = (
        accelerator.unwrap_model(text_encoder)
        .get_input_embeddings()
        .weight[min(placeholder_token_ids) : max(placeholder_token_ids) + 1]
    )
181
    learned_embeds_dict = {args.placeholder_token: learned_embeds.detach().cpu()}
182
183
184
185
186

    if safe_serialization:
        safetensors.torch.save_file(learned_embeds_dict, save_path, metadata={"format": "pt"})
    else:
        torch.save(learned_embeds_dict, save_path)
187
188


Suraj Patil's avatar
Suraj Patil committed
189
190
def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
191
192
193
194
195
196
    parser.add_argument(
        "--save_steps",
        type=int,
        default=500,
        help="Save learned_embeds.bin every X updates steps.",
    )
197
    parser.add_argument(
198
        "--save_as_full_pipeline",
199
        action="store_true",
200
        help="Save the complete stable diffusion pipeline.",
201
    )
202
203
204
205
206
207
    parser.add_argument(
        "--num_vectors",
        type=int,
        default=1,
        help="How many textual inversion vectors shall be used to learn the concept.",
    )
Suraj Patil's avatar
Suraj Patil committed
208
209
210
211
212
213
214
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
215
216
217
218
219
220
221
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
222
223
224
225
226
227
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
    )
Suraj Patil's avatar
Suraj Patil committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data."
    )
    parser.add_argument(
        "--placeholder_token",
        type=str,
        default=None,
        required=True,
        help="A token to use as a placeholder for the concept.",
    )
    parser.add_argument(
        "--initializer_token", type=str, default=None, required=True, help="A token to use as initializer word."
    )
    parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'")
    parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="text-inversion-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
patil-suraj's avatar
patil-suraj committed
266
        "--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution."
Suraj Patil's avatar
Suraj Patil committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument("--num_train_epochs", type=int, default=100)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=5000,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
284
285
286
287
288
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
Suraj Patil's avatar
Suraj Patil committed
289
290
291
292
293
294
295
296
297
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
298
        default=False,
Suraj Patil's avatar
Suraj Patil committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
313
314
315
316
317
318
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
319
320
321
322
323
324
325
326
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
356
            "and Nvidia Ampere GPU or Intel Gen 4 Xeon (and later) ."
Suraj Patil's avatar
Suraj Patil committed
357
358
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
359
360
361
362
363
364
365
366
367
368
369
370
371
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
372
373
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
Suraj Patil's avatar
Suraj Patil committed
374
375
        ),
    )
376
377
378
379
380
381
382
383
384
385
386
387
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="A prompt that is used during validation to verify that the model is learning.",
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
388
389
390
391
392
393
394
395
396
397
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=100,
        help=(
            "Run validation every X steps. Validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`"
            " and logging the images."
        ),
    )
398
399
400
    parser.add_argument(
        "--validation_epochs",
        type=int,
401
        default=None,
402
        help=(
403
            "Deprecated in favor of validation_steps. Run validation every X epochs. Validation consists of running the prompt"
404
405
406
407
            " `args.validation_prompt` multiple times: `args.num_validation_images`"
            " and logging the images."
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
408
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
409
410
411
412
413
414
415
416
417
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
418
    parser.add_argument(
419
        "--checkpoints_total_limit",
420
421
        type=int,
        default=None,
422
        help=("Max number of checkpoints to store."),
423
    )
424
425
426
427
428
429
430
431
432
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
433
434
435
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
436
437
438
439
440
    parser.add_argument(
        "--no_safe_serialization",
        action="store_true",
        help="If specified save the checkpoint not in `safetensors` format, but in original PyTorch format instead.",
    )
Suraj Patil's avatar
Suraj Patil committed
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.train_data_dir is None:
        raise ValueError("You must specify a train data directory.")

    return args


imagenet_templates_small = [
    "a photo of a {}",
    "a rendering of a {}",
    "a cropped photo of the {}",
    "the photo of a {}",
    "a photo of a clean {}",
    "a photo of a dirty {}",
    "a dark photo of the {}",
    "a photo of my {}",
    "a photo of the cool {}",
    "a close-up photo of a {}",
    "a bright photo of the {}",
    "a cropped photo of a {}",
    "a photo of the {}",
    "a good photo of the {}",
    "a photo of one {}",
    "a close-up photo of the {}",
    "a rendition of the {}",
    "a photo of the clean {}",
    "a rendition of a {}",
    "a photo of a nice {}",
    "a good photo of a {}",
    "a photo of the nice {}",
    "a photo of the small {}",
    "a photo of the weird {}",
    "a photo of the large {}",
    "a photo of a cool {}",
    "a photo of a small {}",
]

imagenet_style_templates_small = [
    "a painting in the style of {}",
    "a rendering in the style of {}",
    "a cropped painting in the style of {}",
    "the painting in the style of {}",
    "a clean painting in the style of {}",
    "a dirty painting in the style of {}",
    "a dark painting in the style of {}",
    "a picture in the style of {}",
    "a cool painting in the style of {}",
    "a close-up painting in the style of {}",
    "a bright painting in the style of {}",
    "a cropped painting in the style of {}",
    "a good painting in the style of {}",
    "a close-up painting in the style of {}",
    "a rendition in the style of {}",
    "a nice painting in the style of {}",
    "a small painting in the style of {}",
    "a weird painting in the style of {}",
    "a large painting in the style of {}",
]


class TextualInversionDataset(Dataset):
    def __init__(
        self,
        data_root,
        tokenizer,
        learnable_property="object",  # [object, style]
        size=512,
        repeats=100,
        interpolation="bicubic",
        flip_p=0.5,
        set="train",
        placeholder_token="*",
        center_crop=False,
    ):
        self.data_root = data_root
        self.tokenizer = tokenizer
        self.learnable_property = learnable_property
        self.size = size
        self.placeholder_token = placeholder_token
        self.center_crop = center_crop
        self.flip_p = flip_p

        self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]

        self.num_images = len(self.image_paths)
        self._length = self.num_images

        if set == "train":
            self._length = self.num_images * repeats

        self.interpolation = {
537
538
539
540
            "linear": PIL_INTERPOLATION["linear"],
            "bilinear": PIL_INTERPOLATION["bilinear"],
            "bicubic": PIL_INTERPOLATION["bicubic"],
            "lanczos": PIL_INTERPOLATION["lanczos"],
Suraj Patil's avatar
Suraj Patil committed
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
        }[interpolation]

        self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small
        self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p)

    def __len__(self):
        return self._length

    def __getitem__(self, i):
        example = {}
        image = Image.open(self.image_paths[i % self.num_images])

        if not image.mode == "RGB":
            image = image.convert("RGB")

        placeholder_string = self.placeholder_token
        text = random.choice(self.templates).format(placeholder_string)

        example["input_ids"] = self.tokenizer(
            text,
            padding="max_length",
            truncation=True,
            max_length=self.tokenizer.model_max_length,
            return_tensors="pt",
        ).input_ids[0]

        # default to score-sde preprocessing
        img = np.array(image).astype(np.uint8)

        if self.center_crop:
            crop = min(img.shape[0], img.shape[1])
Patrick von Platen's avatar
Patrick von Platen committed
572
573
574
575
            (
                h,
                w,
            ) = (
Suraj Patil's avatar
Suraj Patil committed
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
                img.shape[0],
                img.shape[1],
            )
            img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2]

        image = Image.fromarray(img)
        image = image.resize((self.size, self.size), resample=self.interpolation)

        image = self.flip_transform(image)
        image = np.array(image).astype(np.uint8)
        image = (image / 127.5 - 1.0).astype(np.float32)

        example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
        return example


def main():
    args = parse_args()
594
595
596
597
598
599
    if args.report_to == "wandb" and args.hub_token is not None:
        raise ValueError(
            "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
            " Please use `huggingface-cli login` to authenticate with the Hub."
        )

Suraj Patil's avatar
Suraj Patil committed
600
    logging_dir = os.path.join(args.output_dir, args.logging_dir)
601
    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
Suraj Patil's avatar
Suraj Patil committed
602
603
604
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
Suraj Patil's avatar
Suraj Patil committed
605
        log_with=args.report_to,
606
        project_config=accelerator_project_config,
Suraj Patil's avatar
Suraj Patil committed
607
608
    )

609
610
611
612
    # Disable AMP for MPS.
    if torch.backends.mps.is_available():
        accelerator.native_amp = False

613
614
615
616
    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")

Suraj Patil's avatar
Suraj Patil committed
617
618
619
620
621
622
623
624
625
626
627
628
629
630
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

Suraj Patil's avatar
Suraj Patil committed
631
632
633
634
635
636
    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
637
        if args.output_dir is not None:
Suraj Patil's avatar
Suraj Patil committed
638
639
            os.makedirs(args.output_dir, exist_ok=True)

640
641
642
643
644
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

Suraj Patil's avatar
Suraj Patil committed
645
    # Load tokenizer
Suraj Patil's avatar
Suraj Patil committed
646
    if args.tokenizer_name:
647
        tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
Suraj Patil's avatar
Suraj Patil committed
648
    elif args.pretrained_model_name_or_path:
649
        tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
650

Suraj Patil's avatar
Suraj Patil committed
651
652
653
654
655
    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
    text_encoder = CLIPTextModel.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
    )
656
657
658
    vae = AutoencoderKL.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant
    )
Suraj Patil's avatar
Suraj Patil committed
659
    unet = UNet2DConditionModel.from_pretrained(
660
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant
Suraj Patil's avatar
Suraj Patil committed
661
662
    )

663
    # Add the placeholder token in tokenizer
664
665
666
667
668
669
670
671
672
673
674
675
676
    placeholder_tokens = [args.placeholder_token]

    if args.num_vectors < 1:
        raise ValueError(f"--num_vectors has to be larger or equal to 1, but is {args.num_vectors}")

    # add dummy tokens for multi-vector
    additional_tokens = []
    for i in range(1, args.num_vectors):
        additional_tokens.append(f"{args.placeholder_token}_{i}")
    placeholder_tokens += additional_tokens

    num_added_tokens = tokenizer.add_tokens(placeholder_tokens)
    if num_added_tokens != args.num_vectors:
677
678
679
        raise ValueError(
            f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different"
            " `placeholder_token` that is not already in the tokenizer."
Suraj Patil's avatar
Suraj Patil committed
680
681
682
683
684
685
686
687
688
        )

    # Convert the initializer_token, placeholder_token to ids
    token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False)
    # Check if initializer_token is a single token or a sequence of tokens
    if len(token_ids) > 1:
        raise ValueError("The initializer token must be a single token.")

    initializer_token_id = token_ids[0]
689
    placeholder_token_ids = tokenizer.convert_tokens_to_ids(placeholder_tokens)
Suraj Patil's avatar
Suraj Patil committed
690
691
692
693
694
695

    # Resize the token embeddings as we are adding new special tokens to the tokenizer
    text_encoder.resize_token_embeddings(len(tokenizer))

    # Initialise the newly added placeholder token with the embeddings of the initializer token
    token_embeds = text_encoder.get_input_embeddings().weight.data
696
697
698
    with torch.no_grad():
        for token_id in placeholder_token_ids:
            token_embeds[token_id] = token_embeds[initializer_token_id].clone()
Suraj Patil's avatar
Suraj Patil committed
699
700

    # Freeze vae and unet
701
702
    vae.requires_grad_(False)
    unet.requires_grad_(False)
Suraj Patil's avatar
Suraj Patil committed
703
    # Freeze all parameters except for the token embeddings in text encoder
704
705
706
    text_encoder.text_model.encoder.requires_grad_(False)
    text_encoder.text_model.final_layer_norm.requires_grad_(False)
    text_encoder.text_model.embeddings.position_embedding.requires_grad_(False)
Suraj Patil's avatar
Suraj Patil committed
707

Suraj Patil's avatar
Suraj Patil committed
708
709
710
711
712
713
714
715
716
    if args.gradient_checkpointing:
        # Keep unet in train mode if we are using gradient checkpointing to save memory.
        # The dropout cannot be != 0 so it doesn't matter if we are in eval or train mode.
        unet.train()
        text_encoder.gradient_checkpointing_enable()
        unet.enable_gradient_checkpointing()

    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
717
718
719
720
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
721
                logger.warning(
722
723
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
Suraj Patil's avatar
Suraj Patil committed
724
725
726
727
728
729
730
731
732
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

Suraj Patil's avatar
Suraj Patil committed
733
734
735
736
737
738
739
740
741
742
743
744
745
746
    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Initialize the optimizer
    optimizer = torch.optim.AdamW(
        text_encoder.get_input_embeddings().parameters(),  # only optimize the embeddings
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

Suraj Patil's avatar
Suraj Patil committed
747
    # Dataset and DataLoaders creation:
Suraj Patil's avatar
Suraj Patil committed
748
749
750
751
    train_dataset = TextualInversionDataset(
        data_root=args.train_data_dir,
        tokenizer=tokenizer,
        size=args.resolution,
752
        placeholder_token=(" ".join(tokenizer.convert_ids_to_tokens(placeholder_token_ids))),
Suraj Patil's avatar
Suraj Patil committed
753
754
755
756
757
        repeats=args.repeats,
        learnable_property=args.learnable_property,
        center_crop=args.center_crop,
        set="train",
    )
758
759
760
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
    )
761
762
763
764
765
766
767
768
769
    if args.validation_epochs is not None:
        warnings.warn(
            f"FutureWarning: You are doing logging with validation_epochs={args.validation_epochs}."
            " Deprecated validation_epochs in favor of `validation_steps`"
            f"Setting `args.validation_steps` to {args.validation_epochs * len(train_dataset)}",
            FutureWarning,
            stacklevel=2,
        )
        args.validation_steps = args.validation_epochs * len(train_dataset)
Suraj Patil's avatar
Suraj Patil committed
770
771
772
773
774
775
776
777
778
779
780

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
781
782
783
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
        num_cycles=args.lr_num_cycles,
Suraj Patil's avatar
Suraj Patil committed
784
785
    )

786
    text_encoder.train()
Suraj Patil's avatar
Suraj Patil committed
787
    # Prepare everything with our `accelerator`.
Suraj Patil's avatar
Suraj Patil committed
788
789
790
791
    text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        text_encoder, optimizer, train_dataloader, lr_scheduler
    )

792
793
    # For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision
    # as these weights are only used for inference, keeping weights in full precision is not required.
794
795
796
797
798
799
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

Suraj Patil's avatar
Suraj Patil committed
800
    # Move vae and unet to device and cast to weight_dtype
801
802
    unet.to(accelerator.device, dtype=weight_dtype)
    vae.to(accelerator.device, dtype=weight_dtype)
Suraj Patil's avatar
Suraj Patil committed
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("textual_inversion", config=vars(args))

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
826
827
    global_step = 0
    first_epoch = 0
Suraj Patil's avatar
Suraj Patil committed
828
    # Potentially load in the weights and states from a previous save
829
830
831
832
833
834
835
836
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
837
838
839
840
841
842
843
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
844
            initial_global_step = 0
845
846
847
848
849
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

850
            initial_global_step = global_step
851
            first_epoch = global_step // num_update_steps_per_epoch
852

853
854
855
856
857
858
859
860
861
862
    else:
        initial_global_step = 0

    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        # Only show the progress bar once on each machine.
        disable=not accelerator.is_local_main_process,
    )
Suraj Patil's avatar
Suraj Patil committed
863

864
    # keep original embeddings as reference
865
    orig_embeds_params = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight.data.clone()
866

867
    for epoch in range(first_epoch, args.num_train_epochs):
Suraj Patil's avatar
Suraj Patil committed
868
869
870
871
        text_encoder.train()
        for step, batch in enumerate(train_dataloader):
            with accelerator.accumulate(text_encoder):
                # Convert images to latent space
872
                latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample().detach()
873
                latents = latents * vae.config.scaling_factor
Suraj Patil's avatar
Suraj Patil committed
874
875

                # Sample noise that we'll add to the latents
876
                noise = torch.randn_like(latents)
Suraj Patil's avatar
Suraj Patil committed
877
878
                bsz = latents.shape[0]
                # Sample a random timestep for each image
879
880
                timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
                timesteps = timesteps.long()
Suraj Patil's avatar
Suraj Patil committed
881
882
883
884
885
886

                # Add noise to the latents according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

                # Get the text embedding for conditioning
887
                encoder_hidden_states = text_encoder(batch["input_ids"])[0].to(dtype=weight_dtype)
Suraj Patil's avatar
Suraj Patil committed
888
889

                # Predict the noise residual
890
891
892
893
894
895
896
897
898
                model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
                    target = noise_scheduler.get_velocity(latents, noise, timesteps)
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
Suraj Patil's avatar
Suraj Patil committed
899

900
901
                loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

Suraj Patil's avatar
Suraj Patil committed
902
903
904
905
906
907
                accelerator.backward(loss)

                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

908
                # Let's make sure we don't update any embedding weights besides the newly added token
909
910
911
                index_no_updates = torch.ones((len(tokenizer),), dtype=torch.bool)
                index_no_updates[min(placeholder_token_ids) : max(placeholder_token_ids) + 1] = False

912
                with torch.no_grad():
Patrick von Platen's avatar
Patrick von Platen committed
913
914
915
                    accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[
                        index_no_updates
                    ] = orig_embeds_params[index_no_updates]
916

Suraj Patil's avatar
Suraj Patil committed
917
918
            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
919
                images = []
Suraj Patil's avatar
Suraj Patil committed
920
921
                progress_bar.update(1)
                global_step += 1
922
                if global_step % args.save_steps == 0:
923
924
                    weight_name = (
                        f"learned_embeds-steps-{global_step}.bin"
Patrick von Platen's avatar
Patrick von Platen committed
925
                        if args.no_safe_serialization
926
927
928
                        else f"learned_embeds-steps-{global_step}.safetensors"
                    )
                    save_path = os.path.join(args.output_dir, weight_name)
929
930
931
932
933
934
935
936
                    save_progress(
                        text_encoder,
                        placeholder_token_ids,
                        accelerator,
                        args,
                        save_path,
                        safe_serialization=not args.no_safe_serialization,
                    )
Suraj Patil's avatar
Suraj Patil committed
937

938
939
                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

960
961
962
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")
963
964

                    if args.validation_prompt is not None and global_step % args.validation_steps == 0:
965
966
967
                        images = log_validation(
                            text_encoder, tokenizer, unet, vae, args, accelerator, weight_dtype, epoch
                        )
968

Suraj Patil's avatar
Suraj Patil committed
969
970
971
972
973
974
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break
975
    # Create the pipeline using the trained modules and save it.
Suraj Patil's avatar
Suraj Patil committed
976
    accelerator.wait_for_everyone()
Suraj Patil's avatar
Suraj Patil committed
977
    if accelerator.is_main_process:
978
        if args.push_to_hub and not args.save_as_full_pipeline:
979
            logger.warning("Enabling full model saving because --push_to_hub=True was specified.")
980
981
            save_full_model = True
        else:
982
            save_full_model = args.save_as_full_pipeline
983
        if save_full_model:
984
985
            pipeline = StableDiffusionPipeline.from_pretrained(
                args.pretrained_model_name_or_path,
986
987
988
989
990
991
992
                text_encoder=accelerator.unwrap_model(text_encoder),
                vae=vae,
                unet=unet,
                tokenizer=tokenizer,
            )
            pipeline.save_pretrained(args.output_dir)
        # Save the newly trained embeddings
993
994
        weight_name = "learned_embeds.bin" if args.no_safe_serialization else "learned_embeds.safetensors"
        save_path = os.path.join(args.output_dir, weight_name)
995
996
997
998
999
1000
1001
1002
        save_progress(
            text_encoder,
            placeholder_token_ids,
            accelerator,
            args,
            save_path,
            safe_serialization=not args.no_safe_serialization,
        )
Suraj Patil's avatar
Suraj Patil committed
1003
1004

        if args.push_to_hub:
1005
1006
1007
1008
1009
1010
            save_model_card(
                repo_id,
                images=images,
                base_model=args.pretrained_model_name_or_path,
                repo_folder=args.output_dir,
            )
1011
1012
1013
1014
1015
1016
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )
Suraj Patil's avatar
Suraj Patil committed
1017
1018
1019
1020
1021
1022

    accelerator.end_training()


if __name__ == "__main__":
    main()