test_stable_diffusion.py 46.8 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16

17
import gc
18
import tempfile
19
import time
20
import traceback
21
22
23
24
import unittest

import numpy as np
import torch
25
from huggingface_hub import hf_hub_download
26
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
27
28
29
30

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
31
    DPMSolverMultistepScheduler,
hlky's avatar
hlky committed
32
33
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
34
35
36
37
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
38
    logging,
39
)
40
from diffusers.models.attention_processor import AttnProcessor
41
42
43
from diffusers.utils.testing_utils import (
    CaptureLogger,
    enable_full_determinism,
Dhruv Nair's avatar
Dhruv Nair committed
44
45
    load_numpy,
    nightly,
46
    numpy_cosine_similarity_distance,
47
48
49
    require_torch_2,
    require_torch_gpu,
    run_test_in_subprocess,
Dhruv Nair's avatar
Dhruv Nair committed
50
51
    slow,
    torch_device,
52
)
53

54
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
55
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
56

57

58
59
60
61
62
63
enable_full_determinism()


# Will be run via run_test_in_subprocess
def _test_stable_diffusion_compile(in_queue, out_queue, timeout):
    error = None
64
    try:
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        inputs = in_queue.get(timeout=timeout)
        torch_device = inputs.pop("torch_device")
        seed = inputs.pop("seed")
        inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed)

        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)

        sd_pipe.unet.to(memory_format=torch.channels_last)
        sd_pipe.unet = torch.compile(sd_pipe.unet, mode="reduce-overhead", fullgraph=True)

        sd_pipe.set_progress_bar_config(disable=None)

        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239])
        assert np.abs(image_slice - expected_slice).max() < 5e-3
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()
91
92


93
94
95
class StableDiffusionPipelineFastTests(
    PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
96
    pipeline_class = StableDiffusionPipeline
97
98
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
99
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
100
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
101

102
    def get_dummy_components(self):
103
        torch.manual_seed(0)
104
        unet = UNet2DConditionModel(
105
106
107
108
109
110
111
112
113
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
114
115
116
117
118
119
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
120
121
        )
        torch.manual_seed(0)
122
        vae = AutoencoderKL(
123
124
125
126
127
128
129
130
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
131
        text_encoder_config = CLIPTextConfig(
132
133
134
135
136
137
138
139
140
141
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
142
143
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
169
170
171
172

    def test_stable_diffusion_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

173
174
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
175
        sd_pipe = sd_pipe.to(torch_device)
176
177
        sd_pipe.set_progress_bar_config(disable=None)

178
179
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
180
181
182
183
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

184
        assert image.shape == (1, 64, 64, 3)
185
        expected_slice = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864])
186
187
188

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    def test_stable_diffusion_prompt_embeds(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        text_inputs = sd_pipe.tokenizer(
            prompt,
            padding="max_length",
            max_length=sd_pipe.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_inputs = text_inputs["input_ids"].to(torch_device)

        prompt_embeds = sd_pipe.text_encoder(text_inputs)[0]

        inputs["prompt_embeds"] = prompt_embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

    def test_stable_diffusion_negative_prompt_embeds(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        inputs["negative_prompt"] = negative_prompt
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        embeds = []
        for p in [prompt, negative_prompt]:
            text_inputs = sd_pipe.tokenizer(
                p,
                padding="max_length",
                max_length=sd_pipe.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_inputs = text_inputs["input_ids"].to(torch_device)

            embeds.append(sd_pipe.text_encoder(text_inputs)[0])

        inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    def test_stable_diffusion_prompt_embeds_with_plain_negative_prompt_list(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        inputs["negative_prompt"] = negative_prompt
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["negative_prompt"] = negative_prompt
        prompt = 3 * [inputs.pop("prompt")]

        text_inputs = sd_pipe.tokenizer(
            prompt,
            padding="max_length",
            max_length=sd_pipe.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_inputs = text_inputs["input_ids"].to(torch_device)

        prompt_embeds = sd_pipe.text_encoder(text_inputs)[0]

        inputs["prompt_embeds"] = prompt_embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

304
305
306
    def test_stable_diffusion_ddim_factor_8(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

307
308
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
309
310
311
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

312
313
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs, height=136, width=136)
314
315
316
317
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

318
319
        assert image.shape == (1, 136, 136, 3)
        expected_slice = np.array([0.5524, 0.5626, 0.6069, 0.4727, 0.386, 0.3995, 0.4613, 0.4328, 0.4269])
320
321
322
323
324

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_pndm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
325
326
327
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = PNDMScheduler(skip_prk_steps=True)
328
329
330
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

331
332
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
333
334
335
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

336
        assert image.shape == (1, 64, 64, 3)
337
        expected_slice = np.array([0.5122, 0.5712, 0.4825, 0.5053, 0.5646, 0.4769, 0.5179, 0.4894, 0.4994])
338

339
340
341
342
343
344
345
346
347
348
349
350
351
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_no_safety_checker(self):
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None
        )
        assert isinstance(pipe, StableDiffusionPipeline)
        assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
        assert pipe.safety_checker is None

        image = pipe("example prompt", num_inference_steps=2).images[0]
        assert image is not None

352
353
354
355
356
357
358
359
360
361
        # check that there's no error when saving a pipeline with one of the models being None
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe = StableDiffusionPipeline.from_pretrained(tmpdirname)

        # sanity check that the pipeline still works
        assert pipe.safety_checker is None
        image = pipe("example prompt", num_inference_steps=2).images[0]
        assert image is not None

362
363
    def test_stable_diffusion_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
hlky's avatar
hlky committed
364

365
366
367
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
hlky's avatar
hlky committed
368
369
370
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

371
372
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
hlky's avatar
hlky committed
373
374
375
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

376
        assert image.shape == (1, 64, 64, 3)
377
        expected_slice = np.array([0.4873, 0.5443, 0.4845, 0.5004, 0.5549, 0.4850, 0.5191, 0.4941, 0.5065])
378

hlky's avatar
hlky committed
379
380
381
382
383
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler_ancestral(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

384
385
386
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
hlky's avatar
hlky committed
387
388
389
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

390
391
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
hlky's avatar
hlky committed
392
393
394
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

395
        assert image.shape == (1, 64, 64, 3)
396
        expected_slice = np.array([0.4872, 0.5444, 0.4846, 0.5003, 0.5549, 0.4850, 0.5189, 0.4941, 0.5067])
397

hlky's avatar
hlky committed
398
399
400
401
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
402

403
404
405
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
406
407
408
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

409
410
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
411
412
413
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

414
        assert image.shape == (1, 64, 64, 3)
415
        expected_slice = np.array([0.4873, 0.5443, 0.4845, 0.5004, 0.5549, 0.4850, 0.5191, 0.4941, 0.5065])
416

417
418
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

419
420
    def test_stable_diffusion_vae_slicing(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
421
422
423
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
424
425
426
427
428
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        image_count = 4

429
430
431
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        output_1 = sd_pipe(**inputs)
432
433
434

        # make sure sliced vae decode yields the same result
        sd_pipe.enable_vae_slicing()
435
436
437
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        output_2 = sd_pipe(**inputs)
438
439
440
441

        # there is a small discrepancy at image borders vs. full batch decode
        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 3e-3

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
    def test_stable_diffusion_vae_tiling(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()

        # make sure here that pndm scheduler skips prk
        components["safety_checker"] = None
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        # Test that tiled decode at 512x512 yields the same result as the non-tiled decode
        generator = torch.Generator(device=device).manual_seed(0)
        output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        # make sure tiled vae decode yields the same result
        sd_pipe.enable_vae_tiling()
        generator = torch.Generator(device=device).manual_seed(0)
        output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 5e-1

465
466
467
468
469
470
        # test that tiled decode works with various shapes
        shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)]
        for shape in shapes:
            zeros = torch.zeros(shape).to(device)
            sd_pipe.vae.decode(zeros)

471
472
    def test_stable_diffusion_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
473
474
475
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        sd_pipe = StableDiffusionPipeline(**components)
476
477
478
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

479
        inputs = self.get_dummy_inputs(device)
480
        negative_prompt = "french fries"
481
        output = sd_pipe(**inputs, negative_prompt=negative_prompt)
482
483
484
485

        image = output.images
        image_slice = image[0, -3:, -3:, -1]

486
        assert image.shape == (1, 64, 64, 3)
487
        expected_slice = np.array([0.5114, 0.5706, 0.4772, 0.5028, 0.5637, 0.4732, 0.5169, 0.4881, 0.4977])
488

489
490
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

491
    def test_stable_diffusion_long_prompt(self):
492
493
494
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
495
496
497
498
499
500
501
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        do_classifier_free_guidance = True
        negative_prompt = None
        num_images_per_prompt = 1
        logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")
502
        logger.setLevel(logging.WARNING)
503
504
505

        prompt = 100 * "@"
        with CaptureLogger(logger) as cap_logger:
506
            negative_text_embeddings, text_embeddings = sd_pipe.encode_prompt(
507
508
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
509
510
            if negative_text_embeddings is not None:
                text_embeddings = torch.cat([negative_text_embeddings, text_embeddings])
511

512
513
514
        # 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
        assert cap_logger.out.count("@") == 25

515
516
        negative_prompt = "Hello"
        with CaptureLogger(logger) as cap_logger_2:
517
            negative_text_embeddings_2, text_embeddings_2 = sd_pipe.encode_prompt(
518
519
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
520
521
            if negative_text_embeddings_2 is not None:
                text_embeddings_2 = torch.cat([negative_text_embeddings_2, text_embeddings_2])
522

523
524
525
526
527
528
529
530
531
532
        assert cap_logger.out == cap_logger_2.out

        prompt = 25 * "@"
        with CaptureLogger(logger) as cap_logger_3:
            negative_text_embeddings_3, text_embeddings_3 = sd_pipe.encode_prompt(
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
            if negative_text_embeddings_3 is not None:
                text_embeddings_3 = torch.cat([negative_text_embeddings_3, text_embeddings_3])

533
534
535
536
        assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
        assert text_embeddings.shape[1] == 77
        assert cap_logger_3.out == ""

537
    def test_stable_diffusion_height_width_opt(self):
538
539
540
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
541
542
543
544
545
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"

546
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
547
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
548
        assert image_shape == (64, 64)
549

550
        output = sd_pipe(prompt, num_inference_steps=1, height=96, width=96, output_type="np")
551
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
552
        assert image_shape == (96, 96)
553
554
555

        config = dict(sd_pipe.unet.config)
        config["sample_size"] = 96
Patrick von Platen's avatar
Patrick von Platen committed
556
        sd_pipe.unet = UNet2DConditionModel.from_config(config).to(torch_device)
557
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
558
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
559
        assert image_shape == (192, 192)
560

561
562
563
564
565
566
    def test_attention_slicing_forward_pass(self):
        super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

567
568

@slow
569
@require_torch_gpu
570
class StableDiffusionPipelineSlowTests(unittest.TestCase):
571
    def setUp(self):
572
573
574
        gc.collect()
        torch.cuda.empty_cache()

575
576
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
577
578
579
580
581
582
583
584
585
586
587
588
589
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_stable_diffusion_1_1_pndm(self):
590
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1")
591
592
593
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

594
595
596
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
597

598
599
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.43625, 0.43554, 0.36670, 0.40660, 0.39703, 0.38658, 0.43936, 0.43557, 0.40592])
600
        assert np.abs(image_slice - expected_slice).max() < 3e-3
601

602
603
604
605
    def test_stable_diffusion_1_4_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
606

607
608
609
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
610

611
612
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.57400, 0.47841, 0.31625, 0.63583, 0.58306, 0.55056, 0.50825, 0.56306, 0.55748])
613
        assert np.abs(image_slice - expected_slice).max() < 3e-3
614

615
616
617
    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
618
619
620
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

621
622
623
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
624

625
626
627
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
628

629
630
631
632
633
634
635
636
637
    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
638
639

        assert image.shape == (1, 512, 512, 3)
640
        expected_slice = np.array([0.10542, 0.09620, 0.07332, 0.09015, 0.09382, 0.07597, 0.08496, 0.07806, 0.06455])
641
        assert np.abs(image_slice - expected_slice).max() < 3e-3
642

643
644
645
646
647
    def test_stable_diffusion_dpm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
648

649
650
651
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
652
653

        assert image.shape == (1, 512, 512, 3)
654
        expected_slice = np.array([0.03503, 0.03494, 0.01087, 0.03128, 0.02552, 0.00803, 0.00742, 0.00372, 0.00000])
655
        assert np.abs(image_slice - expected_slice).max() < 3e-3
656

657
    def test_stable_diffusion_attention_slicing(self):
658
        torch.cuda.reset_peak_memory_stats()
659
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
660
        pipe.unet.set_default_attn_processor()
661
        pipe = pipe.to(torch_device)
662
663
        pipe.set_progress_bar_config(disable=None)

664
        # enable attention slicing
665
        pipe.enable_attention_slicing()
666
667
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_sliced = pipe(**inputs).images
668
669
670
671
672
673

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 3.75 GB is allocated
        assert mem_bytes < 3.75 * 10**9

674
        # disable slicing
675
        pipe.disable_attention_slicing()
676
        pipe.unet.set_default_attn_processor()
677
678
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
679
680
681
682

        # make sure that more than 3.75 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 3.75 * 10**9
683
684
        max_diff = numpy_cosine_similarity_distance(image_sliced.flatten(), image.flatten())
        assert max_diff < 1e-3
685

686
687
    def test_stable_diffusion_vae_slicing(self):
        torch.cuda.reset_peak_memory_stats()
688
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
689
        pipe = pipe.to(torch_device)
690
691
692
693
694
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        # enable vae slicing
        pipe.enable_vae_slicing()
695
696
697
698
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        inputs["prompt"] = [inputs["prompt"]] * 4
        inputs["latents"] = torch.cat([inputs["latents"]] * 4)
        image_sliced = pipe(**inputs).images
699
700
701
702
703
704
705
706

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 4 GB is allocated
        assert mem_bytes < 4e9

        # disable vae slicing
        pipe.disable_vae_slicing()
707
708
709
710
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        inputs["prompt"] = [inputs["prompt"]] * 4
        inputs["latents"] = torch.cat([inputs["latents"]] * 4)
        image = pipe(**inputs).images
711
712
713
714
715

        # make sure that more than 4 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 4e9
        # There is a small discrepancy at the image borders vs. a fully batched version.
716
717
        max_diff = numpy_cosine_similarity_distance(image_sliced.flatten(), image.flatten())
        assert max_diff < 1e-2
718

719
720
721
722
723
724
725
726
727
728
729
730
731
    def test_stable_diffusion_vae_tiling(self):
        torch.cuda.reset_peak_memory_stats()
        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
        pipe.unet = pipe.unet.to(memory_format=torch.channels_last)
        pipe.vae = pipe.vae.to(memory_format=torch.channels_last)

        prompt = "a photograph of an astronaut riding a horse"

        # enable vae tiling
        pipe.enable_vae_tiling()
732
733
734
735
736
737
738
739
740
741
742
743
        pipe.enable_model_cpu_offload()
        generator = torch.Generator(device="cpu").manual_seed(0)
        output_chunked = pipe(
            [prompt],
            width=1024,
            height=1024,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
            output_type="numpy",
        )
        image_chunked = output_chunked.images
744
745
746
747
748

        mem_bytes = torch.cuda.max_memory_allocated()

        # disable vae tiling
        pipe.disable_vae_tiling()
749
750
751
752
753
754
755
756
757
758
759
        generator = torch.Generator(device="cpu").manual_seed(0)
        output = pipe(
            [prompt],
            width=1024,
            height=1024,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
            output_type="numpy",
        )
        image = output.images
760

761
        assert mem_bytes < 1e10
762
763
        max_diff = numpy_cosine_similarity_distance(image_chunked.flatten(), image.flatten())
        assert max_diff < 1e-2
764

765
    def test_stable_diffusion_fp16_vs_autocast(self):
766
767
        # this test makes sure that the original model with autocast
        # and the new model with fp16 yield the same result
768
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
769
        pipe = pipe.to(torch_device)
770
771
        pipe.set_progress_bar_config(disable=None)

772
773
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_fp16 = pipe(**inputs).images
774
775

        with torch.autocast(torch_device):
776
777
            inputs = self.get_inputs(torch_device)
            image_autocast = pipe(**inputs).images
778
779

        # Make sure results are close enough
780
        diff = np.abs(image_fp16.flatten() - image_autocast.flatten())
781
782
783
784
        # They ARE different since ops are not run always at the same precision
        # however, they should be extremely close.
        assert diff.mean() < 2e-2

785
    def test_stable_diffusion_intermediate_state(self):
786
787
        number_of_steps = 0

788
789
        def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            callback_fn.has_been_called = True
790
791
            nonlocal number_of_steps
            number_of_steps += 1
792
            if step == 1:
793
794
795
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
796
797
798
799
800
                expected_slice = np.array(
                    [-0.5693, -0.3018, -0.9746, 0.0518, -0.8770, 0.7559, -1.7402, 0.1022, 1.1582]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
801
            elif step == 2:
802
803
804
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
805
806
807
808
809
                expected_slice = np.array(
                    [-0.1958, -0.2993, -1.0166, -0.5005, -0.4810, 0.6162, -0.9492, 0.6621, 1.4492]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
810

811
        callback_fn.has_been_called = False
812

813
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
814
815
816
817
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

818
819
820
821
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == inputs["num_inference_steps"]
822

823
    def test_stable_diffusion_low_cpu_mem_usage(self):
824
825
826
        pipeline_id = "CompVis/stable-diffusion-v1-4"

        start_time = time.time()
827
        pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16)
828
829
        pipeline_low_cpu_mem_usage.to(torch_device)
        low_cpu_mem_usage_time = time.time() - start_time
830
831

        start_time = time.time()
832
        _ = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16, low_cpu_mem_usage=False)
833
        normal_load_time = time.time() - start_time
834

835
        assert 2 * low_cpu_mem_usage_time < normal_load_time
836

837
    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
838
839
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
840
        torch.cuda.reset_peak_memory_stats()
841

842
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
843
844
845
846
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()
847

848
849
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
850
851

        mem_bytes = torch.cuda.max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
852
853
        # make sure that less than 2.8 GB is allocated
        assert mem_bytes < 2.8 * 10**9
854

855
856
857
858
859
860
861
862
863
864
865
866
867
    def test_stable_diffusion_pipeline_with_model_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)

        # Normal inference

        pipe = StableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            torch_dtype=torch.float16,
        )
868
        pipe.unet.set_default_attn_processor()
869
870
871
872
873
874
875
876
877
878
879
880
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        outputs = pipe(**inputs)
        mem_bytes = torch.cuda.max_memory_allocated()

        # With model offloading

        # Reload but don't move to cuda
        pipe = StableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            torch_dtype=torch.float16,
        )
881
        pipe.unet.set_default_attn_processor()
882
883
884
885
886
887
888

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
889
890
        inputs = self.get_inputs(torch_device, dtype=torch.float16)

891
892
893
        outputs_offloaded = pipe(**inputs)
        mem_bytes_offloaded = torch.cuda.max_memory_allocated()

894
895
896
897
898
        images = outputs.images
        offloaded_images = outputs_offloaded.images

        max_diff = numpy_cosine_similarity_distance(images.flatten(), offloaded_images.flatten())
        assert max_diff < 1e-3
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
        assert mem_bytes_offloaded < mem_bytes
        assert mem_bytes_offloaded < 3.5 * 10**9
        for module in pipe.text_encoder, pipe.unet, pipe.vae, pipe.safety_checker:
            assert module.device == torch.device("cpu")

        # With attention slicing
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_attention_slicing()
        _ = pipe(**inputs)
        mem_bytes_slicing = torch.cuda.max_memory_allocated()

        assert mem_bytes_slicing < mem_bytes_offloaded
        assert mem_bytes_slicing < 3 * 10**9

916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
    def test_stable_diffusion_textual_inversion(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)
        pipe.to("cuda")

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
939
        assert max_diff < 8e-1
940

941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
    def test_stable_diffusion_textual_inversion_with_model_cpu_offload(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.enable_model_cpu_offload()
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 8e-1

    def test_stable_diffusion_textual_inversion_with_sequential_cpu_offload(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.enable_sequential_cpu_offload()
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 8e-1

991
    @require_torch_2
992
    def test_stable_diffusion_compile(self):
993
994
995
996
997
998
999
        seed = 0
        inputs = self.get_inputs(torch_device, seed=seed)
        # Can't pickle a Generator object
        del inputs["generator"]
        inputs["torch_device"] = torch_device
        inputs["seed"] = seed
        run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=inputs)
1000

1001

1lint's avatar
1lint committed
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
@slow
@require_torch_gpu
class StableDiffusionPipelineCkptTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_download_from_hub(self):
        ckpt_paths = [
            "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
            "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix_base.ckpt",
        ]

        for ckpt_path in ckpt_paths:
Patrick von Platen's avatar
Patrick von Platen committed
1017
            pipe = StableDiffusionPipeline.from_single_file(ckpt_path, torch_dtype=torch.float16)
1lint's avatar
1lint committed
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
            pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
            pipe.to("cuda")

        image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_local(self):
        filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-5-pruned-emaonly.ckpt")

Patrick von Platen's avatar
Patrick von Platen committed
1028
        pipe = StableDiffusionPipeline.from_single_file(filename, torch_dtype=torch.float16)
1lint's avatar
1lint committed
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

        image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_ckpt_diff_format_is_same(self):
        ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt"

Patrick von Platen's avatar
Patrick von Platen committed
1039
        pipe = StableDiffusionPipeline.from_single_file(ckpt_path)
1lint's avatar
1lint committed
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        generator = torch.Generator(device="cpu").manual_seed(0)
        image_ckpt = pipe("a turtle", num_inference_steps=5, generator=generator, output_type="np").images[0]

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        generator = torch.Generator(device="cpu").manual_seed(0)
1053
        image = pipe("a turtle", num_inference_steps=2, generator=generator, output_type="np").images[0]
1lint's avatar
1lint committed
1054

1055
1056
1057
        max_diff = numpy_cosine_similarity_distance(image.flatten(), image_ckpt.flatten())

        assert max_diff < 1e-3
1lint's avatar
1lint committed
1058
1059


1060
1061
1062
1063
1064
1065
1066
1067
@nightly
@require_torch_gpu
class StableDiffusionPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1068
1069
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_stable_diffusion_1_4_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_1_5_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_5_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
1123
        assert max_diff < 3e-3
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169

    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_euler(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_euler.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_dpm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 25
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_dpm_multi.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3