unet_grad_tts.py 7.14 KB
Newer Older
patil-suraj's avatar
patil-suraj committed
1
import torch
patil-suraj's avatar
patil-suraj committed
2
from numpy import pad
patil-suraj's avatar
patil-suraj committed
3
4
5

from ..configuration_utils import ConfigMixin
from ..modeling_utils import ModelMixin
6
from .embeddings import get_timestep_embedding
patil-suraj's avatar
patil-suraj committed
7
from .resnet import Downsample, Upsample
patil-suraj's avatar
patil-suraj committed
8

9

patil-suraj's avatar
patil-suraj committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Mish(torch.nn.Module):
    def forward(self, x):
        return x * torch.tanh(torch.nn.functional.softplus(x))


class Rezero(torch.nn.Module):
    def __init__(self, fn):
        super(Rezero, self).__init__()
        self.fn = fn
        self.g = torch.nn.Parameter(torch.zeros(1))

    def forward(self, x):
        return self.fn(x) * self.g


class Block(torch.nn.Module):
    def __init__(self, dim, dim_out, groups=8):
        super(Block, self).__init__()
28
29
30
        self.block = torch.nn.Sequential(
            torch.nn.Conv2d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), Mish()
        )
patil-suraj's avatar
patil-suraj committed
31
32
33
34
35
36
37
38
39

    def forward(self, x, mask):
        output = self.block(x * mask)
        return output * mask


class ResnetBlock(torch.nn.Module):
    def __init__(self, dim, dim_out, time_emb_dim, groups=8):
        super(ResnetBlock, self).__init__()
40
        self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out))
patil-suraj's avatar
patil-suraj committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

        self.block1 = Block(dim, dim_out, groups=groups)
        self.block2 = Block(dim_out, dim_out, groups=groups)
        if dim != dim_out:
            self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
        else:
            self.res_conv = torch.nn.Identity()

    def forward(self, x, mask, time_emb):
        h = self.block1(x, mask)
        h += self.mlp(time_emb).unsqueeze(-1).unsqueeze(-1)
        h = self.block2(h, mask)
        output = h + self.res_conv(x * mask)
        return output


class LinearAttention(torch.nn.Module):
    def __init__(self, dim, heads=4, dim_head=32):
        super(LinearAttention, self).__init__()
        self.heads = heads
Patrick von Platen's avatar
Patrick von Platen committed
61
        self.dim_head = dim_head
patil-suraj's avatar
patil-suraj committed
62
63
        hidden_dim = dim_head * heads
        self.to_qkv = torch.nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
64
        self.to_out = torch.nn.Conv2d(hidden_dim, dim, 1)
patil-suraj's avatar
patil-suraj committed
65
66
67
68

    def forward(self, x):
        b, c, h, w = x.shape
        qkv = self.to_qkv(x)
Patrick von Platen's avatar
Patrick von Platen committed
69
70
71
72
73
74
        #        q, k, v = rearrange(qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3)
        q, k, v = (
            qkv.reshape(b, 3, self.heads, self.dim_head, h, w)
            .permute(1, 0, 2, 3, 4, 5)
            .reshape(3, b, self.heads, self.dim_head, -1)
        )
patil-suraj's avatar
patil-suraj committed
75
        k = k.softmax(dim=-1)
76
77
        context = torch.einsum("bhdn,bhen->bhde", k, v)
        out = torch.einsum("bhde,bhdn->bhen", context, q)
Patrick von Platen's avatar
Patrick von Platen committed
78
79
        #        out = rearrange(out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w)
        out = out.reshape(b, self.heads, self.dim_head, h, w).reshape(b, self.heads * self.dim_head, h, w)
patil-suraj's avatar
patil-suraj committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        return self.to_out(out)


class Residual(torch.nn.Module):
    def __init__(self, fn):
        super(Residual, self).__init__()
        self.fn = fn

    def forward(self, x, *args, **kwargs):
        output = self.fn(x, *args, **kwargs) + x
        return output


class UNetGradTTSModel(ModelMixin, ConfigMixin):
94
    def __init__(self, dim, dim_mults=(1, 2, 4), groups=8, n_spks=None, spk_emb_dim=64, n_feats=80, pe_scale=1000):
patil-suraj's avatar
patil-suraj committed
95
96
        super(UNetGradTTSModel, self).__init__()

97
        self.register_to_config(
patil-suraj's avatar
patil-suraj committed
98
99
100
101
102
103
            dim=dim,
            dim_mults=dim_mults,
            groups=groups,
            n_spks=n_spks,
            spk_emb_dim=spk_emb_dim,
            n_feats=n_feats,
104
            pe_scale=pe_scale,
patil-suraj's avatar
patil-suraj committed
105
        )
106

patil-suraj's avatar
patil-suraj committed
107
108
109
110
111
112
        self.dim = dim
        self.dim_mults = dim_mults
        self.groups = groups
        self.n_spks = n_spks if not isinstance(n_spks, type(None)) else 1
        self.spk_emb_dim = spk_emb_dim
        self.pe_scale = pe_scale
113

patil-suraj's avatar
patil-suraj committed
114
        if n_spks > 1:
patil-suraj's avatar
patil-suraj committed
115
            self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
patil-suraj's avatar
style  
patil-suraj committed
116
117
118
            self.spk_mlp = torch.nn.Sequential(
                torch.nn.Linear(spk_emb_dim, spk_emb_dim * 4), Mish(), torch.nn.Linear(spk_emb_dim * 4, n_feats)
            )
119

120
        self.mlp = torch.nn.Sequential(torch.nn.Linear(dim, dim * 4), Mish(), torch.nn.Linear(dim * 4, dim))
patil-suraj's avatar
patil-suraj committed
121
122
123
124
125
126
127
128
129

        dims = [2 + (1 if n_spks > 1 else 0), *map(lambda m: dim * m, dim_mults)]
        in_out = list(zip(dims[:-1], dims[1:]))
        self.downs = torch.nn.ModuleList([])
        self.ups = torch.nn.ModuleList([])
        num_resolutions = len(in_out)

        for ind, (dim_in, dim_out) in enumerate(in_out):
            is_last = ind >= (num_resolutions - 1)
130
131
132
133
134
135
            self.downs.append(
                torch.nn.ModuleList(
                    [
                        ResnetBlock(dim_in, dim_out, time_emb_dim=dim),
                        ResnetBlock(dim_out, dim_out, time_emb_dim=dim),
                        Residual(Rezero(LinearAttention(dim_out))),
patil-suraj's avatar
patil-suraj committed
136
                        Downsample(dim_out, use_conv=True, padding=1) if not is_last else torch.nn.Identity(),
137
138
139
                    ]
                )
            )
patil-suraj's avatar
patil-suraj committed
140
141
142
143
144
145
146

        mid_dim = dims[-1]
        self.mid_block1 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim)
        self.mid_attn = Residual(Rezero(LinearAttention(mid_dim)))
        self.mid_block2 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim)

        for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
147
148
149
150
151
152
            self.ups.append(
                torch.nn.ModuleList(
                    [
                        ResnetBlock(dim_out * 2, dim_in, time_emb_dim=dim),
                        ResnetBlock(dim_in, dim_in, time_emb_dim=dim),
                        Residual(Rezero(LinearAttention(dim_in))),
patil-suraj's avatar
patil-suraj committed
153
                        Upsample(dim_in, use_conv_transpose=True),
154
155
156
                    ]
                )
            )
patil-suraj's avatar
patil-suraj committed
157
158
159
        self.final_block = Block(dim, dim)
        self.final_conv = torch.nn.Conv2d(dim, 1, 1)

patil-suraj's avatar
patil-suraj committed
160
    def forward(self, x, timesteps, mu, mask, spk=None):
patil-suraj's avatar
patil-suraj committed
161
162
163
164
        if self.n_spks > 1:
            # Get speaker embedding
            spk = self.spk_emb(spk)

patil-suraj's avatar
patil-suraj committed
165
166
        if not isinstance(spk, type(None)):
            s = self.spk_mlp(spk)
167

168
        t = get_timestep_embedding(timesteps, self.dim, scale=self.pe_scale)
patil-suraj's avatar
patil-suraj committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
        t = self.mlp(t)

        if self.n_spks < 2:
            x = torch.stack([mu, x], 1)
        else:
            s = s.unsqueeze(-1).repeat(1, 1, x.shape[-1])
            x = torch.stack([mu, x, s], 1)
        mask = mask.unsqueeze(1)

        hiddens = []
        masks = [mask]
        for resnet1, resnet2, attn, downsample in self.downs:
            mask_down = masks[-1]
            x = resnet1(x, mask_down, t)
            x = resnet2(x, mask_down, t)
            x = attn(x)
            hiddens.append(x)
            x = downsample(x * mask_down)
            masks.append(mask_down[:, :, :, ::2])

        masks = masks[:-1]
        mask_mid = masks[-1]
        x = self.mid_block1(x, mask_mid, t)
        x = self.mid_attn(x)
        x = self.mid_block2(x, mask_mid, t)

        for resnet1, resnet2, attn, upsample in self.ups:
            mask_up = masks.pop()
            x = torch.cat((x, hiddens.pop()), dim=1)
            x = resnet1(x, mask_up, t)
            x = resnet2(x, mask_up, t)
            x = attn(x)
            x = upsample(x * mask_up)

        x = self.final_block(x, mask)
        output = self.final_conv(x * mask)

206
        return (output * mask).squeeze(1)