pipeline_ddpm.py 4.53 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.


Sid Sahai's avatar
Sid Sahai committed
17
from typing import Optional, Tuple, Union
Pedro Cuenca's avatar
Pedro Cuenca committed
18

Patrick von Platen's avatar
Patrick von Platen committed
19
20
import torch

21
from ...configuration_utils import FrozenDict
22
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
23
from ...utils import deprecate
Patrick von Platen's avatar
Patrick von Platen committed
24
25


Patrick von Platen's avatar
Patrick von Platen committed
26
class DDPMPipeline(DiffusionPipeline):
27
28
29
30
31
32
33
34
35
36
37
    r"""
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Parameters:
        unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
            [`DDPMScheduler`], or [`DDIMScheduler`].
    """

38
    def __init__(self, unet, scheduler):
Patrick von Platen's avatar
Patrick von Platen committed
39
        super().__init__()
40
        self.register_modules(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
41

Patrick von Platen's avatar
Patrick von Platen committed
42
    @torch.no_grad()
43
    def __call__(
Sid Sahai's avatar
Sid Sahai committed
44
45
46
        self,
        batch_size: int = 1,
        generator: Optional[torch.Generator] = None,
47
        num_inference_steps: int = 1000,
Sid Sahai's avatar
Sid Sahai committed
48
49
50
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        **kwargs,
51
    ) -> Union[ImagePipelineOutput, Tuple]:
52
53
        r"""
        Args:
54
            batch_size (`int`, *optional*, defaults to 1):
55
                The number of images to generate.
56
            generator (`torch.Generator`, *optional*):
57
58
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
59
60
61
            num_inference_steps (`int`, *optional*, defaults to 1000):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
62
            output_type (`str`, *optional*, defaults to `"pil"`):
63
                The output format of the generate image. Choose between
64
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
65
            return_dict (`bool`, *optional*, defaults to `True`):
66
                Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
67
68
69
70
71

        Returns:
            [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
            `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
            generated images.
72
        """
73
74
75
76
77
78
79
80
81
82
        message = (
            "Please make sure to instantiate your scheduler with `predict_epsilon` instead. E.g. `scheduler ="
            " DDPMScheduler.from_config(<model_id>, predict_epsilon=True)`."
        )
        predict_epsilon = deprecate("predict_epsilon", "0.10.0", message, take_from=kwargs)

        if predict_epsilon is not None:
            new_config = dict(self.scheduler.config)
            new_config["predict_epsilon"] = predict_epsilon
            self.scheduler._internal_dict = FrozenDict(new_config)
Patrick von Platen's avatar
Patrick von Platen committed
83
84

        # Sample gaussian noise to begin loop
Patrick von Platen's avatar
Patrick von Platen committed
85
        image = torch.randn(
Patrick von Platen's avatar
Patrick von Platen committed
86
            (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
Patrick von Platen's avatar
Patrick von Platen committed
87
88
            generator=generator,
        )
Pedro Cuenca's avatar
Pedro Cuenca committed
89
        image = image.to(self.device)
Patrick von Platen's avatar
Patrick von Platen committed
90

91
        # set step values
92
        self.scheduler.set_timesteps(num_inference_steps)
93

hysts's avatar
hysts committed
94
        for t in self.progress_bar(self.scheduler.timesteps):
Patrick von Platen's avatar
Patrick von Platen committed
95
            # 1. predict noise model_output
96
            model_output = self.unet(image, t).sample
Patrick von Platen's avatar
Patrick von Platen committed
97

98
            # 2. compute previous image: x_t -> x_t-1
99
100
101
            image = self.scheduler.step(
                model_output, t, image, generator=generator, predict_epsilon=predict_epsilon
            ).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
102

103
104
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
105
106
        if output_type == "pil":
            image = self.numpy_to_pil(image)
107

108
109
110
111
        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)