test_layers_utils.py 21.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
Patrick von Platen's avatar
Patrick von Platen committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np
import torch
Will Berman's avatar
Will Berman committed
21
from torch import nn
Patrick von Platen's avatar
Patrick von Platen committed
22

23
from diffusers.models.attention import GEGLU, AdaLayerNorm, ApproximateGELU
24
from diffusers.models.embeddings import get_timestep_embedding
Erin's avatar
Erin committed
25
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
26
from diffusers.models.transformers.transformer_2d import Transformer2DModel
Arsalan's avatar
Arsalan committed
27
28
29
30
31
from diffusers.utils.testing_utils import (
    backend_manual_seed,
    require_torch_accelerator_with_fp64,
    torch_device,
)
Patrick von Platen's avatar
Patrick von Platen committed
32
33


34
35
class EmbeddingsTests(unittest.TestCase):
    def test_timestep_embeddings(self):
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
        embedding_dim = 256
        timesteps = torch.arange(16)

        t1 = get_timestep_embedding(timesteps, embedding_dim)

        # first vector should always be composed only of 0's and 1's
        assert (t1[0, : embedding_dim // 2] - 0).abs().sum() < 1e-5
        assert (t1[0, embedding_dim // 2 :] - 1).abs().sum() < 1e-5

        # last element of each vector should be one
        assert (t1[:, -1] - 1).abs().sum() < 1e-5

        # For large embeddings (e.g. 128) the frequency of every vector is higher
        # than the previous one which means that the gradients of later vectors are
        # ALWAYS higher than the previous ones
        grad_mean = np.abs(np.gradient(t1, axis=-1)).mean(axis=1)

        prev_grad = 0.0
        for grad in grad_mean:
            assert grad > prev_grad
            prev_grad = grad

    def test_timestep_flip_sin_cos(self):
        embedding_dim = 16
        timesteps = torch.arange(10)

        t1 = get_timestep_embedding(timesteps, embedding_dim, flip_sin_to_cos=True)
        t1 = torch.cat([t1[:, embedding_dim // 2 :], t1[:, : embedding_dim // 2]], dim=-1)

        t2 = get_timestep_embedding(timesteps, embedding_dim, flip_sin_to_cos=False)

        assert torch.allclose(t1.cpu(), t2.cpu(), 1e-3)

    def test_timestep_downscale_freq_shift(self):
        embedding_dim = 16
        timesteps = torch.arange(10)

        t1 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=0)
        t2 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=1)

        # get cosine half (vectors that are wrapped into cosine)
        cosine_half = (t1 - t2)[:, embedding_dim // 2 :]

        # cosine needs to be negative
        assert (np.abs((cosine_half <= 0).numpy()) - 1).sum() < 1e-5
Patrick von Platen's avatar
Patrick von Platen committed
81

82
83
84
    def test_sinoid_embeddings_hardcoded(self):
        embedding_dim = 64
        timesteps = torch.arange(128)
Patrick von Platen's avatar
Patrick von Platen committed
85

86
87
88
89
90
91
        # standard unet, score_vde
        t1 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=1, flip_sin_to_cos=False)
        # glide, ldm
        t2 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=0, flip_sin_to_cos=True)
        # grad-tts
        t3 = get_timestep_embedding(timesteps, embedding_dim, scale=1000)
Patrick von Platen's avatar
Patrick von Platen committed
92

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
        assert torch.allclose(
            t1[23:26, 47:50].flatten().cpu(),
            torch.tensor([0.9646, 0.9804, 0.9892, 0.9615, 0.9787, 0.9882, 0.9582, 0.9769, 0.9872]),
            1e-3,
        )
        assert torch.allclose(
            t2[23:26, 47:50].flatten().cpu(),
            torch.tensor([0.3019, 0.2280, 0.1716, 0.3146, 0.2377, 0.1790, 0.3272, 0.2474, 0.1864]),
            1e-3,
        )
        assert torch.allclose(
            t3[23:26, 47:50].flatten().cpu(),
            torch.tensor([-0.9801, -0.9464, -0.9349, -0.3952, 0.8887, -0.9709, 0.5299, -0.2853, -0.9927]),
            1e-3,
        )
patil-suraj's avatar
patil-suraj committed
108
109


110
class Upsample2DBlockTests(unittest.TestCase):
patil-suraj's avatar
patil-suraj committed
111
112
113
    def test_upsample_default(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 32, 32)
114
        upsample = Upsample2D(channels=32, use_conv=False)
patil-suraj's avatar
patil-suraj committed
115
116
117
118
119
120
121
122
123
124
125
        with torch.no_grad():
            upsampled = upsample(sample)

        assert upsampled.shape == (1, 32, 64, 64)
        output_slice = upsampled[0, -1, -3:, -3:]
        expected_slice = torch.tensor([-0.2173, -1.2079, -1.2079, 0.2952, 1.1254, 1.1254, 0.2952, 1.1254, 1.1254])
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_upsample_with_conv(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 32, 32)
126
        upsample = Upsample2D(channels=32, use_conv=True)
patil-suraj's avatar
patil-suraj committed
127
128
129
130
131
132
133
134
135
136
137
        with torch.no_grad():
            upsampled = upsample(sample)

        assert upsampled.shape == (1, 32, 64, 64)
        output_slice = upsampled[0, -1, -3:, -3:]
        expected_slice = torch.tensor([0.7145, 1.3773, 0.3492, 0.8448, 1.0839, -0.3341, 0.5956, 0.1250, -0.4841])
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_upsample_with_conv_out_dim(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 32, 32)
138
        upsample = Upsample2D(channels=32, use_conv=True, out_channels=64)
patil-suraj's avatar
patil-suraj committed
139
140
141
142
143
144
145
146
147
148
149
        with torch.no_grad():
            upsampled = upsample(sample)

        assert upsampled.shape == (1, 64, 64, 64)
        output_slice = upsampled[0, -1, -3:, -3:]
        expected_slice = torch.tensor([0.2703, 0.1656, -0.2538, -0.0553, -0.2984, 0.1044, 0.1155, 0.2579, 0.7755])
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_upsample_with_transpose(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 32, 32)
150
        upsample = Upsample2D(channels=32, use_conv=False, use_conv_transpose=True)
patil-suraj's avatar
patil-suraj committed
151
152
153
154
155
156
157
        with torch.no_grad():
            upsampled = upsample(sample)

        assert upsampled.shape == (1, 32, 64, 64)
        output_slice = upsampled[0, -1, -3:, -3:]
        expected_slice = torch.tensor([-0.3028, -0.1582, 0.0071, 0.0350, -0.4799, -0.1139, 0.1056, -0.1153, -0.1046])
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
patil-suraj's avatar
patil-suraj committed
158
159


160
class Downsample2DBlockTests(unittest.TestCase):
patil-suraj's avatar
patil-suraj committed
161
162
163
    def test_downsample_default(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64)
164
        downsample = Downsample2D(channels=32, use_conv=False)
patil-suraj's avatar
patil-suraj committed
165
166
167
168
169
170
171
172
173
174
175
176
177
        with torch.no_grad():
            downsampled = downsample(sample)

        assert downsampled.shape == (1, 32, 32, 32)
        output_slice = downsampled[0, -1, -3:, -3:]
        expected_slice = torch.tensor([-0.0513, -0.3889, 0.0640, 0.0836, -0.5460, -0.0341, -0.0169, -0.6967, 0.1179])
        max_diff = (output_slice.flatten() - expected_slice).abs().sum().item()
        assert max_diff <= 1e-3
        # assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-1)

    def test_downsample_with_conv(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64)
178
        downsample = Downsample2D(channels=32, use_conv=True)
patil-suraj's avatar
patil-suraj committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        with torch.no_grad():
            downsampled = downsample(sample)

        assert downsampled.shape == (1, 32, 32, 32)
        output_slice = downsampled[0, -1, -3:, -3:]

        expected_slice = torch.tensor(
            [0.9267, 0.5878, 0.3337, 1.2321, -0.1191, -0.3984, -0.7532, -0.0715, -0.3913],
        )
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_downsample_with_conv_pad1(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64)
193
        downsample = Downsample2D(channels=32, use_conv=True, padding=1)
patil-suraj's avatar
patil-suraj committed
194
195
196
197
198
199
200
201
202
203
204
        with torch.no_grad():
            downsampled = downsample(sample)

        assert downsampled.shape == (1, 32, 32, 32)
        output_slice = downsampled[0, -1, -3:, -3:]
        expected_slice = torch.tensor([0.9267, 0.5878, 0.3337, 1.2321, -0.1191, -0.3984, -0.7532, -0.0715, -0.3913])
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_downsample_with_conv_out_dim(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64)
205
        downsample = Downsample2D(channels=32, use_conv=True, out_channels=16)
patil-suraj's avatar
patil-suraj committed
206
207
208
209
210
211
212
        with torch.no_grad():
            downsampled = downsample(sample)

        assert downsampled.shape == (1, 16, 32, 32)
        output_slice = downsampled[0, -1, -3:, -3:]
        expected_slice = torch.tensor([-0.6586, 0.5985, 0.0721, 0.1256, -0.1492, 0.4436, -0.2544, 0.5021, 1.1522])
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
Sid Sahai's avatar
Sid Sahai committed
213
214


Erin's avatar
Erin committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
class ResnetBlock2DTests(unittest.TestCase):
    def test_resnet_default(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64).to(torch_device)
        temb = torch.randn(1, 128).to(torch_device)
        resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128).to(torch_device)
        with torch.no_grad():
            output_tensor = resnet_block(sample, temb)

        assert output_tensor.shape == (1, 32, 64, 64)
        output_slice = output_tensor[0, -1, -3:, -3:]
        expected_slice = torch.tensor(
            [-1.9010, -0.2974, -0.8245, -1.3533, 0.8742, -0.9645, -2.0584, 1.3387, -0.4746], device=torch_device
        )
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_restnet_with_use_in_shortcut(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64).to(torch_device)
        temb = torch.randn(1, 128).to(torch_device)
        resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, use_in_shortcut=True).to(torch_device)
        with torch.no_grad():
            output_tensor = resnet_block(sample, temb)

        assert output_tensor.shape == (1, 32, 64, 64)
        output_slice = output_tensor[0, -1, -3:, -3:]
        expected_slice = torch.tensor(
            [0.2226, -1.0791, -0.1629, 0.3659, -0.2889, -1.2376, 0.0582, 0.9206, 0.0044], device=torch_device
        )
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_resnet_up(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64).to(torch_device)
        temb = torch.randn(1, 128).to(torch_device)
        resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, up=True).to(torch_device)
        with torch.no_grad():
            output_tensor = resnet_block(sample, temb)

        assert output_tensor.shape == (1, 32, 128, 128)
        output_slice = output_tensor[0, -1, -3:, -3:]
        expected_slice = torch.tensor(
            [1.2130, -0.8753, -0.9027, 1.5783, -0.5362, -0.5001, 1.0726, -0.7732, -0.4182], device=torch_device
        )
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_resnet_down(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64).to(torch_device)
        temb = torch.randn(1, 128).to(torch_device)
        resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, down=True).to(torch_device)
        with torch.no_grad():
            output_tensor = resnet_block(sample, temb)

        assert output_tensor.shape == (1, 32, 32, 32)
        output_slice = output_tensor[0, -1, -3:, -3:]
        expected_slice = torch.tensor(
            [-0.3002, -0.7135, 0.1359, 0.0561, -0.7935, 0.0113, -0.1766, -0.6714, -0.0436], device=torch_device
        )
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_restnet_with_kernel_fir(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64).to(torch_device)
        temb = torch.randn(1, 128).to(torch_device)
        resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, kernel="fir", down=True).to(torch_device)
        with torch.no_grad():
            output_tensor = resnet_block(sample, temb)

        assert output_tensor.shape == (1, 32, 32, 32)
        output_slice = output_tensor[0, -1, -3:, -3:]
        expected_slice = torch.tensor(
            [-0.0934, -0.5729, 0.0909, -0.2710, -0.5044, 0.0243, -0.0665, -0.5267, -0.3136], device=torch_device
        )
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_restnet_with_kernel_sde_vp(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64).to(torch_device)
        temb = torch.randn(1, 128).to(torch_device)
        resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, kernel="sde_vp", down=True).to(torch_device)
        with torch.no_grad():
            output_tensor = resnet_block(sample, temb)

        assert output_tensor.shape == (1, 32, 32, 32)
        output_slice = output_tensor[0, -1, -3:, -3:]
        expected_slice = torch.tensor(
            [-0.3002, -0.7135, 0.1359, 0.0561, -0.7935, 0.0113, -0.1766, -0.6714, -0.0436], device=torch_device
        )
Anton Lozhkov's avatar
Anton Lozhkov committed
304
305
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

Sid Sahai's avatar
Sid Sahai committed
306

Will Berman's avatar
Will Berman committed
307
class Transformer2DModelTests(unittest.TestCase):
Sid Sahai's avatar
Sid Sahai committed
308
309
    def test_spatial_transformer_default(self):
        torch.manual_seed(0)
Arsalan's avatar
Arsalan committed
310
        backend_manual_seed(torch_device, 0)
Sid Sahai's avatar
Sid Sahai committed
311
312

        sample = torch.randn(1, 32, 64, 64).to(torch_device)
Will Berman's avatar
Will Berman committed
313
        spatial_transformer_block = Transformer2DModel(
Sid Sahai's avatar
Sid Sahai committed
314
            in_channels=32,
Will Berman's avatar
Will Berman committed
315
316
            num_attention_heads=1,
            attention_head_dim=32,
Sid Sahai's avatar
Sid Sahai committed
317
            dropout=0.0,
Will Berman's avatar
Will Berman committed
318
            cross_attention_dim=None,
Sid Sahai's avatar
Sid Sahai committed
319
320
        ).to(torch_device)
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
321
            attention_scores = spatial_transformer_block(sample).sample
Sid Sahai's avatar
Sid Sahai committed
322
323
324
325

        assert attention_scores.shape == (1, 32, 64, 64)
        output_slice = attention_scores[0, -1, -3:, -3:]

326
        expected_slice = torch.tensor(
327
            [-1.9455, -0.0066, -1.3933, -1.5878, 0.5325, -0.6486, -1.8648, 0.7515, -0.9689], device=torch_device
328
        )
Sid Sahai's avatar
Sid Sahai committed
329
330
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

Will Berman's avatar
Will Berman committed
331
    def test_spatial_transformer_cross_attention_dim(self):
Sid Sahai's avatar
Sid Sahai committed
332
        torch.manual_seed(0)
Arsalan's avatar
Arsalan committed
333
        backend_manual_seed(torch_device, 0)
Sid Sahai's avatar
Sid Sahai committed
334
335

        sample = torch.randn(1, 64, 64, 64).to(torch_device)
Will Berman's avatar
Will Berman committed
336
        spatial_transformer_block = Transformer2DModel(
Sid Sahai's avatar
Sid Sahai committed
337
            in_channels=64,
Will Berman's avatar
Will Berman committed
338
339
            num_attention_heads=2,
            attention_head_dim=32,
Sid Sahai's avatar
Sid Sahai committed
340
            dropout=0.0,
Will Berman's avatar
Will Berman committed
341
            cross_attention_dim=64,
Sid Sahai's avatar
Sid Sahai committed
342
343
344
        ).to(torch_device)
        with torch.no_grad():
            context = torch.randn(1, 4, 64).to(torch_device)
Will Berman's avatar
Will Berman committed
345
            attention_scores = spatial_transformer_block(sample, context).sample
Sid Sahai's avatar
Sid Sahai committed
346
347
348

        assert attention_scores.shape == (1, 64, 64, 64)
        output_slice = attention_scores[0, -1, -3:, -3:]
Patrick von Platen's avatar
Patrick von Platen committed
349
350
351
        expected_slice = torch.tensor(
            [0.0143, -0.6909, -2.1547, -1.8893, 1.4097, 0.1359, -0.2521, -1.3359, 0.2598], device=torch_device
        )
Sid Sahai's avatar
Sid Sahai committed
352
353
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

Will Berman's avatar
Will Berman committed
354
355
    def test_spatial_transformer_timestep(self):
        torch.manual_seed(0)
Arsalan's avatar
Arsalan committed
356
        backend_manual_seed(torch_device, 0)
Will Berman's avatar
Will Berman committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

        num_embeds_ada_norm = 5

        sample = torch.randn(1, 64, 64, 64).to(torch_device)
        spatial_transformer_block = Transformer2DModel(
            in_channels=64,
            num_attention_heads=2,
            attention_head_dim=32,
            dropout=0.0,
            cross_attention_dim=64,
            num_embeds_ada_norm=num_embeds_ada_norm,
        ).to(torch_device)
        with torch.no_grad():
            timestep_1 = torch.tensor(1, dtype=torch.long).to(torch_device)
            timestep_2 = torch.tensor(2, dtype=torch.long).to(torch_device)
            attention_scores_1 = spatial_transformer_block(sample, timestep=timestep_1).sample
            attention_scores_2 = spatial_transformer_block(sample, timestep=timestep_2).sample

        assert attention_scores_1.shape == (1, 64, 64, 64)
        assert attention_scores_2.shape == (1, 64, 64, 64)

        output_slice_1 = attention_scores_1[0, -1, -3:, -3:]
        output_slice_2 = attention_scores_2[0, -1, -3:, -3:]

Patrick von Platen's avatar
Patrick von Platen committed
381
382
383
        expected_slice = torch.tensor(
            [-0.3923, -1.0923, -1.7144, -1.5570, 1.4154, 0.1738, -0.1157, -1.2998, -0.1703], device=torch_device
        )
Will Berman's avatar
Will Berman committed
384
        expected_slice_2 = torch.tensor(
Patrick von Platen's avatar
Patrick von Platen committed
385
            [-0.4311, -1.1376, -1.7732, -1.5997, 1.3450, 0.0964, -0.1569, -1.3590, -0.2348], device=torch_device
Will Berman's avatar
Will Berman committed
386
387
        )

388
        assert torch.allclose(output_slice_1.flatten(), expected_slice, atol=1e-3)
Will Berman's avatar
Will Berman committed
389
390
        assert torch.allclose(output_slice_2.flatten(), expected_slice_2, atol=1e-3)

Sid Sahai's avatar
Sid Sahai committed
391
392
    def test_spatial_transformer_dropout(self):
        torch.manual_seed(0)
Arsalan's avatar
Arsalan committed
393
        backend_manual_seed(torch_device, 0)
Sid Sahai's avatar
Sid Sahai committed
394
395
396

        sample = torch.randn(1, 32, 64, 64).to(torch_device)
        spatial_transformer_block = (
Will Berman's avatar
Will Berman committed
397
            Transformer2DModel(
Sid Sahai's avatar
Sid Sahai committed
398
                in_channels=32,
Will Berman's avatar
Will Berman committed
399
400
                num_attention_heads=2,
                attention_head_dim=16,
Sid Sahai's avatar
Sid Sahai committed
401
                dropout=0.3,
Will Berman's avatar
Will Berman committed
402
                cross_attention_dim=None,
Sid Sahai's avatar
Sid Sahai committed
403
404
405
406
407
            )
            .to(torch_device)
            .eval()
        )
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
408
            attention_scores = spatial_transformer_block(sample).sample
Sid Sahai's avatar
Sid Sahai committed
409
410
411
412

        assert attention_scores.shape == (1, 32, 64, 64)
        output_slice = attention_scores[0, -1, -3:, -3:]

413
        expected_slice = torch.tensor(
414
            [-1.9380, -0.0083, -1.3771, -1.5819, 0.5209, -0.6441, -1.8545, 0.7563, -0.9615], device=torch_device
415
        )
Sid Sahai's avatar
Sid Sahai committed
416
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
Will Berman's avatar
Will Berman committed
417

Arsalan's avatar
Arsalan committed
418
    @require_torch_accelerator_with_fp64
Will Berman's avatar
Will Berman committed
419
420
    def test_spatial_transformer_discrete(self):
        torch.manual_seed(0)
Arsalan's avatar
Arsalan committed
421
        backend_manual_seed(torch_device, 0)
Will Berman's avatar
Will Berman committed
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

        num_embed = 5

        sample = torch.randint(0, num_embed, (1, 32)).to(torch_device)
        spatial_transformer_block = (
            Transformer2DModel(
                num_attention_heads=1,
                attention_head_dim=32,
                num_vector_embeds=num_embed,
                sample_size=16,
            )
            .to(torch_device)
            .eval()
        )

        with torch.no_grad():
            attention_scores = spatial_transformer_block(sample).sample

        assert attention_scores.shape == (1, num_embed - 1, 32)

        output_slice = attention_scores[0, -2:, -3:]

444
        expected_slice = torch.tensor([-1.7648, -1.0241, -2.0985, -1.8035, -1.6404, -1.2098], device=torch_device)
Will Berman's avatar
Will Berman committed
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_spatial_transformer_default_norm_layers(self):
        spatial_transformer_block = Transformer2DModel(num_attention_heads=1, attention_head_dim=32, in_channels=32)

        assert spatial_transformer_block.transformer_blocks[0].norm1.__class__ == nn.LayerNorm
        assert spatial_transformer_block.transformer_blocks[0].norm3.__class__ == nn.LayerNorm

    def test_spatial_transformer_ada_norm_layers(self):
        spatial_transformer_block = Transformer2DModel(
            num_attention_heads=1,
            attention_head_dim=32,
            in_channels=32,
            num_embeds_ada_norm=5,
        )

        assert spatial_transformer_block.transformer_blocks[0].norm1.__class__ == AdaLayerNorm
        assert spatial_transformer_block.transformer_blocks[0].norm3.__class__ == nn.LayerNorm

    def test_spatial_transformer_default_ff_layers(self):
        spatial_transformer_block = Transformer2DModel(
            num_attention_heads=1,
            attention_head_dim=32,
            in_channels=32,
        )

        assert spatial_transformer_block.transformer_blocks[0].ff.net[0].__class__ == GEGLU
        assert spatial_transformer_block.transformer_blocks[0].ff.net[1].__class__ == nn.Dropout
473
        assert spatial_transformer_block.transformer_blocks[0].ff.net[2].__class__ == nn.Linear
Will Berman's avatar
Will Berman committed
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

        dim = 32
        inner_dim = 128

        # First dimension change
        assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.in_features == dim
        # NOTE: inner_dim * 2 because GEGLU
        assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.out_features == inner_dim * 2

        # Second dimension change
        assert spatial_transformer_block.transformer_blocks[0].ff.net[2].in_features == inner_dim
        assert spatial_transformer_block.transformer_blocks[0].ff.net[2].out_features == dim

    def test_spatial_transformer_geglu_approx_ff_layers(self):
        spatial_transformer_block = Transformer2DModel(
            num_attention_heads=1,
            attention_head_dim=32,
            in_channels=32,
            activation_fn="geglu-approximate",
        )

        assert spatial_transformer_block.transformer_blocks[0].ff.net[0].__class__ == ApproximateGELU
        assert spatial_transformer_block.transformer_blocks[0].ff.net[1].__class__ == nn.Dropout
497
        assert spatial_transformer_block.transformer_blocks[0].ff.net[2].__class__ == nn.Linear
Will Berman's avatar
Will Berman committed
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

        dim = 32
        inner_dim = 128

        # First dimension change
        assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.in_features == dim
        assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.out_features == inner_dim

        # Second dimension change
        assert spatial_transformer_block.transformer_blocks[0].ff.net[2].in_features == inner_dim
        assert spatial_transformer_block.transformer_blocks[0].ff.net[2].out_features == dim

    def test_spatial_transformer_attention_bias(self):
        spatial_transformer_block = Transformer2DModel(
            num_attention_heads=1, attention_head_dim=32, in_channels=32, attention_bias=True
        )

        assert spatial_transformer_block.transformer_blocks[0].attn1.to_q.bias is not None
        assert spatial_transformer_block.transformer_blocks[0].attn1.to_k.bias is not None
        assert spatial_transformer_block.transformer_blocks[0].attn1.to_v.bias is not None