test_layers_utils.py 22 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
Patrick von Platen's avatar
Patrick von Platen committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np
import torch
Will Berman's avatar
Will Berman committed
21
from torch import nn
Patrick von Platen's avatar
Patrick von Platen committed
22

23
from diffusers.models.attention import GEGLU, AdaLayerNorm, ApproximateGELU
24
from diffusers.models.embeddings import get_timestep_embedding
25
from diffusers.models.lora import LoRACompatibleLinear
Erin's avatar
Erin committed
26
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
27
from diffusers.models.transformer_2d import Transformer2DModel
Arsalan's avatar
Arsalan committed
28
29
30
31
32
from diffusers.utils.testing_utils import (
    backend_manual_seed,
    require_torch_accelerator_with_fp64,
    torch_device,
)
Patrick von Platen's avatar
Patrick von Platen committed
33
34


35
36
class EmbeddingsTests(unittest.TestCase):
    def test_timestep_embeddings(self):
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
        embedding_dim = 256
        timesteps = torch.arange(16)

        t1 = get_timestep_embedding(timesteps, embedding_dim)

        # first vector should always be composed only of 0's and 1's
        assert (t1[0, : embedding_dim // 2] - 0).abs().sum() < 1e-5
        assert (t1[0, embedding_dim // 2 :] - 1).abs().sum() < 1e-5

        # last element of each vector should be one
        assert (t1[:, -1] - 1).abs().sum() < 1e-5

        # For large embeddings (e.g. 128) the frequency of every vector is higher
        # than the previous one which means that the gradients of later vectors are
        # ALWAYS higher than the previous ones
        grad_mean = np.abs(np.gradient(t1, axis=-1)).mean(axis=1)

        prev_grad = 0.0
        for grad in grad_mean:
            assert grad > prev_grad
            prev_grad = grad

    def test_timestep_defaults(self):
60
61
        embedding_dim = 16
        timesteps = torch.arange(10)
Patrick von Platen's avatar
Patrick von Platen committed
62

63
        t1 = get_timestep_embedding(timesteps, embedding_dim)
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
        t2 = get_timestep_embedding(
            timesteps, embedding_dim, flip_sin_to_cos=False, downscale_freq_shift=1, max_period=10_000
        )

        assert torch.allclose(t1.cpu(), t2.cpu(), 1e-3)

    def test_timestep_flip_sin_cos(self):
        embedding_dim = 16
        timesteps = torch.arange(10)

        t1 = get_timestep_embedding(timesteps, embedding_dim, flip_sin_to_cos=True)
        t1 = torch.cat([t1[:, embedding_dim // 2 :], t1[:, : embedding_dim // 2]], dim=-1)

        t2 = get_timestep_embedding(timesteps, embedding_dim, flip_sin_to_cos=False)

        assert torch.allclose(t1.cpu(), t2.cpu(), 1e-3)

    def test_timestep_downscale_freq_shift(self):
        embedding_dim = 16
        timesteps = torch.arange(10)

        t1 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=0)
        t2 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=1)

        # get cosine half (vectors that are wrapped into cosine)
        cosine_half = (t1 - t2)[:, embedding_dim // 2 :]

        # cosine needs to be negative
        assert (np.abs((cosine_half <= 0).numpy()) - 1).sum() < 1e-5
Patrick von Platen's avatar
Patrick von Platen committed
93

94
95
96
    def test_sinoid_embeddings_hardcoded(self):
        embedding_dim = 64
        timesteps = torch.arange(128)
Patrick von Platen's avatar
Patrick von Platen committed
97

98
99
100
101
102
103
        # standard unet, score_vde
        t1 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=1, flip_sin_to_cos=False)
        # glide, ldm
        t2 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=0, flip_sin_to_cos=True)
        # grad-tts
        t3 = get_timestep_embedding(timesteps, embedding_dim, scale=1000)
Patrick von Platen's avatar
Patrick von Platen committed
104

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        assert torch.allclose(
            t1[23:26, 47:50].flatten().cpu(),
            torch.tensor([0.9646, 0.9804, 0.9892, 0.9615, 0.9787, 0.9882, 0.9582, 0.9769, 0.9872]),
            1e-3,
        )
        assert torch.allclose(
            t2[23:26, 47:50].flatten().cpu(),
            torch.tensor([0.3019, 0.2280, 0.1716, 0.3146, 0.2377, 0.1790, 0.3272, 0.2474, 0.1864]),
            1e-3,
        )
        assert torch.allclose(
            t3[23:26, 47:50].flatten().cpu(),
            torch.tensor([-0.9801, -0.9464, -0.9349, -0.3952, 0.8887, -0.9709, 0.5299, -0.2853, -0.9927]),
            1e-3,
        )
patil-suraj's avatar
patil-suraj committed
120
121


122
class Upsample2DBlockTests(unittest.TestCase):
patil-suraj's avatar
patil-suraj committed
123
124
125
    def test_upsample_default(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 32, 32)
126
        upsample = Upsample2D(channels=32, use_conv=False)
patil-suraj's avatar
patil-suraj committed
127
128
129
130
131
132
133
134
135
136
137
        with torch.no_grad():
            upsampled = upsample(sample)

        assert upsampled.shape == (1, 32, 64, 64)
        output_slice = upsampled[0, -1, -3:, -3:]
        expected_slice = torch.tensor([-0.2173, -1.2079, -1.2079, 0.2952, 1.1254, 1.1254, 0.2952, 1.1254, 1.1254])
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_upsample_with_conv(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 32, 32)
138
        upsample = Upsample2D(channels=32, use_conv=True)
patil-suraj's avatar
patil-suraj committed
139
140
141
142
143
144
145
146
147
148
149
        with torch.no_grad():
            upsampled = upsample(sample)

        assert upsampled.shape == (1, 32, 64, 64)
        output_slice = upsampled[0, -1, -3:, -3:]
        expected_slice = torch.tensor([0.7145, 1.3773, 0.3492, 0.8448, 1.0839, -0.3341, 0.5956, 0.1250, -0.4841])
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_upsample_with_conv_out_dim(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 32, 32)
150
        upsample = Upsample2D(channels=32, use_conv=True, out_channels=64)
patil-suraj's avatar
patil-suraj committed
151
152
153
154
155
156
157
158
159
160
161
        with torch.no_grad():
            upsampled = upsample(sample)

        assert upsampled.shape == (1, 64, 64, 64)
        output_slice = upsampled[0, -1, -3:, -3:]
        expected_slice = torch.tensor([0.2703, 0.1656, -0.2538, -0.0553, -0.2984, 0.1044, 0.1155, 0.2579, 0.7755])
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_upsample_with_transpose(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 32, 32)
162
        upsample = Upsample2D(channels=32, use_conv=False, use_conv_transpose=True)
patil-suraj's avatar
patil-suraj committed
163
164
165
166
167
168
169
        with torch.no_grad():
            upsampled = upsample(sample)

        assert upsampled.shape == (1, 32, 64, 64)
        output_slice = upsampled[0, -1, -3:, -3:]
        expected_slice = torch.tensor([-0.3028, -0.1582, 0.0071, 0.0350, -0.4799, -0.1139, 0.1056, -0.1153, -0.1046])
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
patil-suraj's avatar
patil-suraj committed
170
171


172
class Downsample2DBlockTests(unittest.TestCase):
patil-suraj's avatar
patil-suraj committed
173
174
175
    def test_downsample_default(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64)
176
        downsample = Downsample2D(channels=32, use_conv=False)
patil-suraj's avatar
patil-suraj committed
177
178
179
180
181
182
183
184
185
186
187
188
189
        with torch.no_grad():
            downsampled = downsample(sample)

        assert downsampled.shape == (1, 32, 32, 32)
        output_slice = downsampled[0, -1, -3:, -3:]
        expected_slice = torch.tensor([-0.0513, -0.3889, 0.0640, 0.0836, -0.5460, -0.0341, -0.0169, -0.6967, 0.1179])
        max_diff = (output_slice.flatten() - expected_slice).abs().sum().item()
        assert max_diff <= 1e-3
        # assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-1)

    def test_downsample_with_conv(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64)
190
        downsample = Downsample2D(channels=32, use_conv=True)
patil-suraj's avatar
patil-suraj committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
        with torch.no_grad():
            downsampled = downsample(sample)

        assert downsampled.shape == (1, 32, 32, 32)
        output_slice = downsampled[0, -1, -3:, -3:]

        expected_slice = torch.tensor(
            [0.9267, 0.5878, 0.3337, 1.2321, -0.1191, -0.3984, -0.7532, -0.0715, -0.3913],
        )
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_downsample_with_conv_pad1(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64)
205
        downsample = Downsample2D(channels=32, use_conv=True, padding=1)
patil-suraj's avatar
patil-suraj committed
206
207
208
209
210
211
212
213
214
215
216
        with torch.no_grad():
            downsampled = downsample(sample)

        assert downsampled.shape == (1, 32, 32, 32)
        output_slice = downsampled[0, -1, -3:, -3:]
        expected_slice = torch.tensor([0.9267, 0.5878, 0.3337, 1.2321, -0.1191, -0.3984, -0.7532, -0.0715, -0.3913])
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_downsample_with_conv_out_dim(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64)
217
        downsample = Downsample2D(channels=32, use_conv=True, out_channels=16)
patil-suraj's avatar
patil-suraj committed
218
219
220
221
222
223
224
        with torch.no_grad():
            downsampled = downsample(sample)

        assert downsampled.shape == (1, 16, 32, 32)
        output_slice = downsampled[0, -1, -3:, -3:]
        expected_slice = torch.tensor([-0.6586, 0.5985, 0.0721, 0.1256, -0.1492, 0.4436, -0.2544, 0.5021, 1.1522])
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
Sid Sahai's avatar
Sid Sahai committed
225
226


Erin's avatar
Erin committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
class ResnetBlock2DTests(unittest.TestCase):
    def test_resnet_default(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64).to(torch_device)
        temb = torch.randn(1, 128).to(torch_device)
        resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128).to(torch_device)
        with torch.no_grad():
            output_tensor = resnet_block(sample, temb)

        assert output_tensor.shape == (1, 32, 64, 64)
        output_slice = output_tensor[0, -1, -3:, -3:]
        expected_slice = torch.tensor(
            [-1.9010, -0.2974, -0.8245, -1.3533, 0.8742, -0.9645, -2.0584, 1.3387, -0.4746], device=torch_device
        )
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_restnet_with_use_in_shortcut(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64).to(torch_device)
        temb = torch.randn(1, 128).to(torch_device)
        resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, use_in_shortcut=True).to(torch_device)
        with torch.no_grad():
            output_tensor = resnet_block(sample, temb)

        assert output_tensor.shape == (1, 32, 64, 64)
        output_slice = output_tensor[0, -1, -3:, -3:]
        expected_slice = torch.tensor(
            [0.2226, -1.0791, -0.1629, 0.3659, -0.2889, -1.2376, 0.0582, 0.9206, 0.0044], device=torch_device
        )
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_resnet_up(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64).to(torch_device)
        temb = torch.randn(1, 128).to(torch_device)
        resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, up=True).to(torch_device)
        with torch.no_grad():
            output_tensor = resnet_block(sample, temb)

        assert output_tensor.shape == (1, 32, 128, 128)
        output_slice = output_tensor[0, -1, -3:, -3:]
        expected_slice = torch.tensor(
            [1.2130, -0.8753, -0.9027, 1.5783, -0.5362, -0.5001, 1.0726, -0.7732, -0.4182], device=torch_device
        )
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_resnet_down(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64).to(torch_device)
        temb = torch.randn(1, 128).to(torch_device)
        resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, down=True).to(torch_device)
        with torch.no_grad():
            output_tensor = resnet_block(sample, temb)

        assert output_tensor.shape == (1, 32, 32, 32)
        output_slice = output_tensor[0, -1, -3:, -3:]
        expected_slice = torch.tensor(
            [-0.3002, -0.7135, 0.1359, 0.0561, -0.7935, 0.0113, -0.1766, -0.6714, -0.0436], device=torch_device
        )
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_restnet_with_kernel_fir(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64).to(torch_device)
        temb = torch.randn(1, 128).to(torch_device)
        resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, kernel="fir", down=True).to(torch_device)
        with torch.no_grad():
            output_tensor = resnet_block(sample, temb)

        assert output_tensor.shape == (1, 32, 32, 32)
        output_slice = output_tensor[0, -1, -3:, -3:]
        expected_slice = torch.tensor(
            [-0.0934, -0.5729, 0.0909, -0.2710, -0.5044, 0.0243, -0.0665, -0.5267, -0.3136], device=torch_device
        )
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_restnet_with_kernel_sde_vp(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64).to(torch_device)
        temb = torch.randn(1, 128).to(torch_device)
        resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, kernel="sde_vp", down=True).to(torch_device)
        with torch.no_grad():
            output_tensor = resnet_block(sample, temb)

        assert output_tensor.shape == (1, 32, 32, 32)
        output_slice = output_tensor[0, -1, -3:, -3:]
        expected_slice = torch.tensor(
            [-0.3002, -0.7135, 0.1359, 0.0561, -0.7935, 0.0113, -0.1766, -0.6714, -0.0436], device=torch_device
        )
Anton Lozhkov's avatar
Anton Lozhkov committed
316
317
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

Sid Sahai's avatar
Sid Sahai committed
318

Will Berman's avatar
Will Berman committed
319
class Transformer2DModelTests(unittest.TestCase):
Sid Sahai's avatar
Sid Sahai committed
320
321
    def test_spatial_transformer_default(self):
        torch.manual_seed(0)
Arsalan's avatar
Arsalan committed
322
        backend_manual_seed(torch_device, 0)
Sid Sahai's avatar
Sid Sahai committed
323
324

        sample = torch.randn(1, 32, 64, 64).to(torch_device)
Will Berman's avatar
Will Berman committed
325
        spatial_transformer_block = Transformer2DModel(
Sid Sahai's avatar
Sid Sahai committed
326
            in_channels=32,
Will Berman's avatar
Will Berman committed
327
328
            num_attention_heads=1,
            attention_head_dim=32,
Sid Sahai's avatar
Sid Sahai committed
329
            dropout=0.0,
Will Berman's avatar
Will Berman committed
330
            cross_attention_dim=None,
Sid Sahai's avatar
Sid Sahai committed
331
332
        ).to(torch_device)
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
333
            attention_scores = spatial_transformer_block(sample).sample
Sid Sahai's avatar
Sid Sahai committed
334
335
336
337

        assert attention_scores.shape == (1, 32, 64, 64)
        output_slice = attention_scores[0, -1, -3:, -3:]

338
        expected_slice = torch.tensor(
339
            [-1.9455, -0.0066, -1.3933, -1.5878, 0.5325, -0.6486, -1.8648, 0.7515, -0.9689], device=torch_device
340
        )
Sid Sahai's avatar
Sid Sahai committed
341
342
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

Will Berman's avatar
Will Berman committed
343
    def test_spatial_transformer_cross_attention_dim(self):
Sid Sahai's avatar
Sid Sahai committed
344
        torch.manual_seed(0)
Arsalan's avatar
Arsalan committed
345
        backend_manual_seed(torch_device, 0)
Sid Sahai's avatar
Sid Sahai committed
346
347

        sample = torch.randn(1, 64, 64, 64).to(torch_device)
Will Berman's avatar
Will Berman committed
348
        spatial_transformer_block = Transformer2DModel(
Sid Sahai's avatar
Sid Sahai committed
349
            in_channels=64,
Will Berman's avatar
Will Berman committed
350
351
            num_attention_heads=2,
            attention_head_dim=32,
Sid Sahai's avatar
Sid Sahai committed
352
            dropout=0.0,
Will Berman's avatar
Will Berman committed
353
            cross_attention_dim=64,
Sid Sahai's avatar
Sid Sahai committed
354
355
356
        ).to(torch_device)
        with torch.no_grad():
            context = torch.randn(1, 4, 64).to(torch_device)
Will Berman's avatar
Will Berman committed
357
            attention_scores = spatial_transformer_block(sample, context).sample
Sid Sahai's avatar
Sid Sahai committed
358
359
360

        assert attention_scores.shape == (1, 64, 64, 64)
        output_slice = attention_scores[0, -1, -3:, -3:]
Patrick von Platen's avatar
Patrick von Platen committed
361
362
363
        expected_slice = torch.tensor(
            [0.0143, -0.6909, -2.1547, -1.8893, 1.4097, 0.1359, -0.2521, -1.3359, 0.2598], device=torch_device
        )
Sid Sahai's avatar
Sid Sahai committed
364
365
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

Will Berman's avatar
Will Berman committed
366
367
    def test_spatial_transformer_timestep(self):
        torch.manual_seed(0)
Arsalan's avatar
Arsalan committed
368
        backend_manual_seed(torch_device, 0)
Will Berman's avatar
Will Berman committed
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

        num_embeds_ada_norm = 5

        sample = torch.randn(1, 64, 64, 64).to(torch_device)
        spatial_transformer_block = Transformer2DModel(
            in_channels=64,
            num_attention_heads=2,
            attention_head_dim=32,
            dropout=0.0,
            cross_attention_dim=64,
            num_embeds_ada_norm=num_embeds_ada_norm,
        ).to(torch_device)
        with torch.no_grad():
            timestep_1 = torch.tensor(1, dtype=torch.long).to(torch_device)
            timestep_2 = torch.tensor(2, dtype=torch.long).to(torch_device)
            attention_scores_1 = spatial_transformer_block(sample, timestep=timestep_1).sample
            attention_scores_2 = spatial_transformer_block(sample, timestep=timestep_2).sample

        assert attention_scores_1.shape == (1, 64, 64, 64)
        assert attention_scores_2.shape == (1, 64, 64, 64)

        output_slice_1 = attention_scores_1[0, -1, -3:, -3:]
        output_slice_2 = attention_scores_2[0, -1, -3:, -3:]

Patrick von Platen's avatar
Patrick von Platen committed
393
394
395
        expected_slice = torch.tensor(
            [-0.3923, -1.0923, -1.7144, -1.5570, 1.4154, 0.1738, -0.1157, -1.2998, -0.1703], device=torch_device
        )
Will Berman's avatar
Will Berman committed
396
        expected_slice_2 = torch.tensor(
Patrick von Platen's avatar
Patrick von Platen committed
397
            [-0.4311, -1.1376, -1.7732, -1.5997, 1.3450, 0.0964, -0.1569, -1.3590, -0.2348], device=torch_device
Will Berman's avatar
Will Berman committed
398
399
        )

400
        assert torch.allclose(output_slice_1.flatten(), expected_slice, atol=1e-3)
Will Berman's avatar
Will Berman committed
401
402
        assert torch.allclose(output_slice_2.flatten(), expected_slice_2, atol=1e-3)

Sid Sahai's avatar
Sid Sahai committed
403
404
    def test_spatial_transformer_dropout(self):
        torch.manual_seed(0)
Arsalan's avatar
Arsalan committed
405
        backend_manual_seed(torch_device, 0)
Sid Sahai's avatar
Sid Sahai committed
406
407
408

        sample = torch.randn(1, 32, 64, 64).to(torch_device)
        spatial_transformer_block = (
Will Berman's avatar
Will Berman committed
409
            Transformer2DModel(
Sid Sahai's avatar
Sid Sahai committed
410
                in_channels=32,
Will Berman's avatar
Will Berman committed
411
412
                num_attention_heads=2,
                attention_head_dim=16,
Sid Sahai's avatar
Sid Sahai committed
413
                dropout=0.3,
Will Berman's avatar
Will Berman committed
414
                cross_attention_dim=None,
Sid Sahai's avatar
Sid Sahai committed
415
416
417
418
419
            )
            .to(torch_device)
            .eval()
        )
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
420
            attention_scores = spatial_transformer_block(sample).sample
Sid Sahai's avatar
Sid Sahai committed
421
422
423
424

        assert attention_scores.shape == (1, 32, 64, 64)
        output_slice = attention_scores[0, -1, -3:, -3:]

425
        expected_slice = torch.tensor(
426
            [-1.9380, -0.0083, -1.3771, -1.5819, 0.5209, -0.6441, -1.8545, 0.7563, -0.9615], device=torch_device
427
        )
Sid Sahai's avatar
Sid Sahai committed
428
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
Will Berman's avatar
Will Berman committed
429

Arsalan's avatar
Arsalan committed
430
    @require_torch_accelerator_with_fp64
Will Berman's avatar
Will Berman committed
431
432
    def test_spatial_transformer_discrete(self):
        torch.manual_seed(0)
Arsalan's avatar
Arsalan committed
433
        backend_manual_seed(torch_device, 0)
Will Berman's avatar
Will Berman committed
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

        num_embed = 5

        sample = torch.randint(0, num_embed, (1, 32)).to(torch_device)
        spatial_transformer_block = (
            Transformer2DModel(
                num_attention_heads=1,
                attention_head_dim=32,
                num_vector_embeds=num_embed,
                sample_size=16,
            )
            .to(torch_device)
            .eval()
        )

        with torch.no_grad():
            attention_scores = spatial_transformer_block(sample).sample

        assert attention_scores.shape == (1, num_embed - 1, 32)

        output_slice = attention_scores[0, -2:, -3:]

456
        expected_slice = torch.tensor([-1.7648, -1.0241, -2.0985, -1.8035, -1.6404, -1.2098], device=torch_device)
Will Berman's avatar
Will Berman committed
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_spatial_transformer_default_norm_layers(self):
        spatial_transformer_block = Transformer2DModel(num_attention_heads=1, attention_head_dim=32, in_channels=32)

        assert spatial_transformer_block.transformer_blocks[0].norm1.__class__ == nn.LayerNorm
        assert spatial_transformer_block.transformer_blocks[0].norm3.__class__ == nn.LayerNorm

    def test_spatial_transformer_ada_norm_layers(self):
        spatial_transformer_block = Transformer2DModel(
            num_attention_heads=1,
            attention_head_dim=32,
            in_channels=32,
            num_embeds_ada_norm=5,
        )

        assert spatial_transformer_block.transformer_blocks[0].norm1.__class__ == AdaLayerNorm
        assert spatial_transformer_block.transformer_blocks[0].norm3.__class__ == nn.LayerNorm

    def test_spatial_transformer_default_ff_layers(self):
        spatial_transformer_block = Transformer2DModel(
            num_attention_heads=1,
            attention_head_dim=32,
            in_channels=32,
        )

        assert spatial_transformer_block.transformer_blocks[0].ff.net[0].__class__ == GEGLU
        assert spatial_transformer_block.transformer_blocks[0].ff.net[1].__class__ == nn.Dropout
485
        assert spatial_transformer_block.transformer_blocks[0].ff.net[2].__class__ == LoRACompatibleLinear
Will Berman's avatar
Will Berman committed
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508

        dim = 32
        inner_dim = 128

        # First dimension change
        assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.in_features == dim
        # NOTE: inner_dim * 2 because GEGLU
        assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.out_features == inner_dim * 2

        # Second dimension change
        assert spatial_transformer_block.transformer_blocks[0].ff.net[2].in_features == inner_dim
        assert spatial_transformer_block.transformer_blocks[0].ff.net[2].out_features == dim

    def test_spatial_transformer_geglu_approx_ff_layers(self):
        spatial_transformer_block = Transformer2DModel(
            num_attention_heads=1,
            attention_head_dim=32,
            in_channels=32,
            activation_fn="geglu-approximate",
        )

        assert spatial_transformer_block.transformer_blocks[0].ff.net[0].__class__ == ApproximateGELU
        assert spatial_transformer_block.transformer_blocks[0].ff.net[1].__class__ == nn.Dropout
509
        assert spatial_transformer_block.transformer_blocks[0].ff.net[2].__class__ == LoRACompatibleLinear
Will Berman's avatar
Will Berman committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

        dim = 32
        inner_dim = 128

        # First dimension change
        assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.in_features == dim
        assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.out_features == inner_dim

        # Second dimension change
        assert spatial_transformer_block.transformer_blocks[0].ff.net[2].in_features == inner_dim
        assert spatial_transformer_block.transformer_blocks[0].ff.net[2].out_features == dim

    def test_spatial_transformer_attention_bias(self):
        spatial_transformer_block = Transformer2DModel(
            num_attention_heads=1, attention_head_dim=32, in_channels=32, attention_bias=True
        )

        assert spatial_transformer_block.transformer_blocks[0].attn1.to_q.bias is not None
        assert spatial_transformer_block.transformer_blocks[0].attn1.to_k.bias is not None
        assert spatial_transformer_block.transformer_blocks[0].attn1.to_v.bias is not None