lora_pipeline.py 216 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aryan's avatar
Aryan committed
14

15
16
17
18
import os
from typing import Callable, Dict, List, Optional, Union

import torch
19
from huggingface_hub.utils import validate_hf_hub_args
20
21
22

from ..utils import (
    USE_PEFT_BACKEND,
23
    deprecate,
24
    get_submodule_by_name,
hlky's avatar
hlky committed
25
26
    is_bitsandbytes_available,
    is_gguf_available,
27
    is_peft_available,
28
    is_peft_version,
29
    is_torch_version,
30
    is_transformers_available,
31
    is_transformers_version,
32
33
    logging,
)
34
35
36
37
38
39
from .lora_base import (  # noqa
    LORA_WEIGHT_NAME,
    LORA_WEIGHT_NAME_SAFE,
    LoraBaseMixin,
    _fetch_state_dict,
    _load_lora_into_text_encoder,
40
    _pack_dict_with_prefix,
41
)
42
from .lora_conversion_utils import (
Aryan's avatar
Aryan committed
43
    _convert_bfl_flux_control_lora_to_diffusers,
44
    _convert_fal_kontext_lora_to_diffusers,
45
    _convert_hunyuan_video_lora_to_diffusers,
46
    _convert_kohya_flux_lora_to_diffusers,
47
    _convert_musubi_wan_lora_to_diffusers,
48
    _convert_non_diffusers_hidream_lora_to_diffusers,
49
    _convert_non_diffusers_lora_to_diffusers,
50
    _convert_non_diffusers_ltxv_lora_to_diffusers,
51
    _convert_non_diffusers_lumina2_lora_to_diffusers,
52
    _convert_non_diffusers_qwen_lora_to_diffusers,
53
    _convert_non_diffusers_wan_lora_to_diffusers,
54
55
56
    _convert_xlabs_flux_lora_to_diffusers,
    _maybe_map_sgm_blocks_to_diffusers,
)
57
58


59
60
61
62
63
64
65
66
67
68
69
_LOW_CPU_MEM_USAGE_DEFAULT_LORA = False
if is_torch_version(">=", "1.9.0"):
    if (
        is_peft_available()
        and is_peft_version(">=", "0.13.1")
        and is_transformers_available()
        and is_transformers_version(">", "4.45.2")
    ):
        _LOW_CPU_MEM_USAGE_DEFAULT_LORA = True


70
71
72
73
logger = logging.get_logger(__name__)

TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"
Will Berman's avatar
Will Berman committed
74
TRANSFORMER_NAME = "transformer"
75

Aryan's avatar
Aryan committed
76
77
_MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX = {"x_embedder": "in_channels"}

78

hlky's avatar
hlky committed
79
80
81
82
83
84
85
86
def _maybe_dequantize_weight_for_expanded_lora(model, module):
    if is_bitsandbytes_available():
        from ..quantizers.bitsandbytes import dequantize_bnb_weight

    if is_gguf_available():
        from ..quantizers.gguf.utils import dequantize_gguf_tensor

    is_bnb_4bit_quantized = module.weight.__class__.__name__ == "Params4bit"
87
    is_bnb_8bit_quantized = module.weight.__class__.__name__ == "Int8Params"
hlky's avatar
hlky committed
88
89
90
91
92
93
    is_gguf_quantized = module.weight.__class__.__name__ == "GGUFParameter"

    if is_bnb_4bit_quantized and not is_bitsandbytes_available():
        raise ValueError(
            "The checkpoint seems to have been quantized with `bitsandbytes` (4bits). Install `bitsandbytes` to load quantized checkpoints."
        )
94
95
96
97
    if is_bnb_8bit_quantized and not is_bitsandbytes_available():
        raise ValueError(
            "The checkpoint seems to have been quantized with `bitsandbytes` (8bits). Install `bitsandbytes` to load quantized checkpoints."
        )
hlky's avatar
hlky committed
98
99
100
101
102
103
    if is_gguf_quantized and not is_gguf_available():
        raise ValueError(
            "The checkpoint seems to have been quantized with `gguf`. Install `gguf` to load quantized checkpoints."
        )

    weight_on_cpu = False
104
    if module.weight.device.type == "cpu":
hlky's avatar
hlky committed
105
106
        weight_on_cpu = True

107
    device = torch.accelerator.current_accelerator().type if hasattr(torch, "accelerator") else "cuda"
108
    if is_bnb_4bit_quantized or is_bnb_8bit_quantized:
hlky's avatar
hlky committed
109
        module_weight = dequantize_bnb_weight(
110
            module.weight.to(device) if weight_on_cpu else module.weight,
111
            state=module.weight.quant_state if is_bnb_4bit_quantized else module.state,
hlky's avatar
hlky committed
112
113
114
115
            dtype=model.dtype,
        ).data
    elif is_gguf_quantized:
        module_weight = dequantize_gguf_tensor(
116
            module.weight.to(device) if weight_on_cpu else module.weight,
hlky's avatar
hlky committed
117
118
119
120
121
122
123
124
125
126
127
        )
        module_weight = module_weight.to(model.dtype)
    else:
        module_weight = module.weight.data

    if weight_on_cpu:
        module_weight = module_weight.cpu()

    return module_weight


128
class StableDiffusionLoraLoaderMixin(LoraBaseMixin):
129
    r"""
130
    Load LoRA layers into Stable Diffusion [`UNet2DConditionModel`] and
131
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
132
    """
133

134
    _lora_loadable_modules = ["unet", "text_encoder"]
135
    unet_name = UNET_NAME
136
    text_encoder_name = TEXT_ENCODER_NAME
137
138

    def load_lora_weights(
139
140
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
141
        adapter_name: Optional[str] = None,
142
143
        hotswap: bool = False,
        **kwargs,
144
    ):
145
        """Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
146
147
148
149
        `self.text_encoder`.

        All kwargs are forwarded to `self.lora_state_dict`.

150
151
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
        loaded.
152

153
154
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is
        loaded into `self.unet`.
155

156
157
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state
        dict is loaded into `self.text_encoder`.
158
159
160

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
161
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
162
            adapter_name (`str`, *optional*):
163
164
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
165
166
167
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
168
            hotswap (`bool`, *optional*):
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
                Defaults to `False`. Whether to substitute an existing (LoRA) adapter with the newly loaded adapter
                in-place. This means that, instead of loading an additional adapter, this will take the existing
                adapter weights and replace them with the weights of the new adapter. This can be faster and more
                memory efficient. However, the main advantage of hotswapping is that when the model is compiled with
                torch.compile, loading the new adapter does not require recompilation of the model. When using
                hotswapping, the passed `adapter_name` should be the name of an already loaded adapter.

                If the new adapter and the old adapter have different ranks and/or LoRA alphas (i.e. scaling), you need
                to call an additional method before loading the adapter:

                ```py
                pipeline = ...  # load diffusers pipeline
                max_rank = ...  # the highest rank among all LoRAs that you want to load
                # call *before* compiling and loading the LoRA adapter
                pipeline.enable_lora_hotswap(target_rank=max_rank)
                pipeline.load_lora_weights(file_name)
                # optionally compile the model now
                ```

                Note that hotswapping adapters of the text encoder is not yet supported. There are some further
                limitations to this technique, which are documented here:
                https://huggingface.co/docs/peft/main/en/package_reference/hotswap
191
192
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
193
        """
194
195
196
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

197
198
199
200
201
202
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

203
204
205
206
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

207
        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
208
209
        kwargs["return_lora_metadata"] = True
        state_dict, network_alphas, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
210

Sayak Paul's avatar
Sayak Paul committed
211
        is_correct_format = all("lora" in key for key in state_dict.keys())
212
213
214
215
216
217
218
219
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_unet(
            state_dict,
            network_alphas=network_alphas,
            unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet,
            adapter_name=adapter_name,
220
            metadata=metadata,
221
            _pipeline=self,
222
            low_cpu_mem_usage=low_cpu_mem_usage,
223
            hotswap=hotswap,
224
225
226
227
228
229
230
231
232
233
        )
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=network_alphas,
            text_encoder=getattr(self, self.text_encoder_name)
            if not hasattr(self, "text_encoder")
            else self.text_encoder,
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
            _pipeline=self,
234
            metadata=metadata,
235
            low_cpu_mem_usage=low_cpu_mem_usage,
236
            hotswap=hotswap,
237
238
239
        )

    @classmethod
240
    @validate_hf_hub_args
241
242
243
244
245
246
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
247
248
        Return state dict for lora weights and the network alphas.

Steven Liu's avatar
Steven Liu committed
249
250
        > [!WARNING] > We support loading A1111 formatted LoRA checkpoints in a limited capacity. > > This function is
        experimental and might change in the future.
251
252
253
254
255
256
257

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
258
259
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
260
261
262
263
264
265
266
267
268
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
269

270
271
272
273
274
275
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
276
            token (`str` or *bool*, *optional*):
277
278
279
280
281
282
283
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
284
285
            weight_name (`str`, *optional*, defaults to None):
                Name of the serialized state dict file.
286
287
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
288
289
290
        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
291
        cache_dir = kwargs.pop("cache_dir", None)
292
293
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
294
295
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
296
297
298
299
300
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        unet_config = kwargs.pop("unet_config", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
301
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
302
303
304
305
306
307

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

308
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
309

310
        state_dict, metadata = _fetch_state_dict(
311
312
313
314
315
316
317
318
319
320
321
322
323
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
Sayak Paul's avatar
Sayak Paul committed
324
325
326
327
328
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

        network_alphas = None
        # TODO: replace it with a method from `state_dict_utils`
        if all(
            (
                k.startswith("lora_te_")
                or k.startswith("lora_unet_")
                or k.startswith("lora_te1_")
                or k.startswith("lora_te2_")
            )
            for k in state_dict.keys()
        ):
            # Map SDXL blocks correctly.
            if unet_config is not None:
                # use unet config to remap block numbers
344
                state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
345
            state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict)
346

347
348
        out = (state_dict, network_alphas, metadata) if return_lora_metadata else (state_dict, network_alphas)
        return out
349
350

    @classmethod
351
    def load_lora_into_unet(
352
353
354
355
356
357
358
359
        cls,
        state_dict,
        network_alphas,
        unet,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
360
        metadata=None,
361
    ):
362
        """
363
        This will load the LoRA layers specified in `state_dict` into `unet`.
364
365
366

        Parameters:
            state_dict (`dict`):
367
368
369
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
370
            network_alphas (`Dict[str, float]`):
371
372
373
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
374
375
376
            unet (`UNet2DConditionModel`):
                The UNet model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
377
378
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
379
380
381
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading only loading the pretrained LoRA weights and not initializing the random
                weights.
382
383
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
384
385
386
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
387
        """
388
389
390
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

391
392
393
394
395
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

396
397
398
        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as
        # their prefixes.
399
400
401
402
403
404
        logger.info(f"Loading {cls.unet_name}.")
        unet.load_lora_adapter(
            state_dict,
            prefix=cls.unet_name,
            network_alphas=network_alphas,
            adapter_name=adapter_name,
405
            metadata=metadata,
406
407
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
408
            hotswap=hotswap,
409
        )
410

411
412
413
414
415
416
417
418
419
420
    @classmethod
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
421
        low_cpu_mem_usage=False,
422
        hotswap: bool = False,
423
        metadata=None,
424
425
426
427
428
429
430
431
432
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
433
434
435
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
436
437
438
439
440
441
442
443
444
445
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
446
447
448
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
449
450
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
451
452
453
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
454
        """
455
456
457
458
459
460
461
462
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
463
            metadata=metadata,
464
465
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
466
            hotswap=hotswap,
467
        )
468

469
470
471
472
473
474
475
476
477
478
    @classmethod
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
479
480
        unet_lora_adapter_metadata=None,
        text_encoder_lora_adapter_metadata=None,
481
482
    ):
        r"""
483
        Save the LoRA parameters corresponding to the UNet and text encoder.
484
485
486

        Arguments:
            save_directory (`str` or `os.PathLike`):
487
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
488
489
490
491
492
493
494
495
496
497
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
498
499
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
500
501
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
502
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
503
504
505
506
            unet_lora_adapter_metadata:
                LoRA adapter metadata associated with the unet to be serialized with the state dict.
            text_encoder_lora_adapter_metadata:
                LoRA adapter metadata associated with the text encoder to be serialized with the state dict.
507
        """
508
509
        lora_layers = {}
        lora_metadata = {}
510

511
        if unet_lora_layers:
512
513
            lora_layers[cls.unet_name] = unet_lora_layers
            lora_metadata[cls.unet_name] = unet_lora_adapter_metadata
514

515
        if text_encoder_lora_layers:
516
517
            lora_layers[cls.text_encoder_name] = text_encoder_lora_layers
            lora_metadata[cls.text_encoder_name] = text_encoder_lora_adapter_metadata
Will Berman's avatar
Will Berman committed
518

519
520
        if not lora_layers:
            raise ValueError("You must pass at least one of `unet_lora_layers` or `text_encoder_lora_layers`.")
521

522
        cls._save_lora_weights(
523
            save_directory=save_directory,
524
525
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
526
527
528
529
530
531
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

532
533
    def fuse_lora(
        self,
534
        components: List[str] = ["unet", "text_encoder"],
535
536
537
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
538
        **kwargs,
539
540
541
542
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

Steven Liu's avatar
Steven Liu committed
543
        > [!WARNING] > This is an experimental API.
544
545

        Args:
546
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
567
        super().fuse_lora(
568
569
570
571
572
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
573
        )
574

575
    def unfuse_lora(self, components: List[str] = ["unet", "text_encoder"], **kwargs):
576
577
        r"""
        Reverses the effect of
578
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
579

Steven Liu's avatar
Steven Liu committed
580
        > [!WARNING] > This is an experimental API.
581
582

        Args:
583
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
584
585
586
587
588
            unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
            unfuse_text_encoder (`bool`, defaults to `True`):
                Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
                LoRA parameters then it won't have any effect.
        """
589
        super().unfuse_lora(components=components, **kwargs)
590
591


592
593
594
595
596
597
class StableDiffusionXLLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into Stable Diffusion XL [`UNet2DConditionModel`],
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and
    [`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection).
    """
598

599
600
601
    _lora_loadable_modules = ["unet", "text_encoder", "text_encoder_2"]
    unet_name = UNET_NAME
    text_encoder_name = TEXT_ENCODER_NAME
602

603
604
605
606
    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
607
        hotswap: bool = False,
608
609
610
        **kwargs,
    ):
        """
611
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
612
        """
613
614
615
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

616
617
618
619
620
621
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

622
623
624
625
        # We could have accessed the unet config from `lora_state_dict()` too. We pass
        # it here explicitly to be able to tell that it's coming from an SDXL
        # pipeline.

626
627
628
629
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

630
        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
631
632
        kwargs["return_lora_metadata"] = True
        state_dict, network_alphas, metadata = self.lora_state_dict(
633
634
635
636
            pretrained_model_name_or_path_or_dict,
            unet_config=self.unet.config,
            **kwargs,
        )
Sayak Paul's avatar
Sayak Paul committed
637
638

        is_correct_format = all("lora" in key for key in state_dict.keys())
639
640
641
642
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_unet(
643
644
645
646
            state_dict,
            network_alphas=network_alphas,
            unet=self.unet,
            adapter_name=adapter_name,
647
            metadata=metadata,
648
649
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
650
            hotswap=hotswap,
651
        )
652
653
654
655
656
657
658
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=network_alphas,
            text_encoder=self.text_encoder,
            prefix=self.text_encoder_name,
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
659
            metadata=metadata,
660
661
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
662
            hotswap=hotswap,
663
664
665
666
667
668
669
670
        )
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=network_alphas,
            text_encoder=self.text_encoder_2,
            prefix=f"{self.text_encoder_name}_2",
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
671
            metadata=metadata,
672
673
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
674
            hotswap=hotswap,
675
        )
676
677

    @classmethod
678
679
680
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.lora_state_dict
    def lora_state_dict(
681
682
683
684
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
685
        r"""
686
        Return state dict for lora weights and the network alphas.
687

Steven Liu's avatar
Steven Liu committed
688
689
        > [!WARNING] > We support loading A1111 formatted LoRA checkpoints in a limited capacity. > > This function is
        experimental and might change in the future.
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
723
724
            weight_name (`str`, *optional*, defaults to None):
                Name of the serialized state dict file.
725
726
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
727
728
729
730
731
732
733
734
735
736
737
        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
738
        unet_config = kwargs.pop("unet_config", None)
739
        use_safetensors = kwargs.pop("use_safetensors", None)
740
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Dhruv Nair's avatar
Dhruv Nair committed
741

742
743
744
745
746
        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

747
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
748

749
        state_dict, metadata = _fetch_state_dict(
750
751
752
753
754
755
756
757
758
759
760
761
762
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
Sayak Paul's avatar
Sayak Paul committed
763
764
765
766
767
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785

        network_alphas = None
        # TODO: replace it with a method from `state_dict_utils`
        if all(
            (
                k.startswith("lora_te_")
                or k.startswith("lora_unet_")
                or k.startswith("lora_te1_")
                or k.startswith("lora_te2_")
            )
            for k in state_dict.keys()
        ):
            # Map SDXL blocks correctly.
            if unet_config is not None:
                # use unet config to remap block numbers
                state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
            state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict)

786
787
        out = (state_dict, network_alphas, metadata) if return_lora_metadata else (state_dict, network_alphas)
        return out
788
789
790

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_unet
791
    def load_lora_into_unet(
792
793
794
795
796
797
798
799
        cls,
        state_dict,
        network_alphas,
        unet,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
800
        metadata=None,
801
    ):
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
        """
        This will load the LoRA layers specified in `state_dict` into `unet`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            network_alphas (`Dict[str, float]`):
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
            unet (`UNet2DConditionModel`):
                The UNet model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
819
820
821
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading only loading the pretrained LoRA weights and not initializing the random
                weights.
822
823
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
824
825
826
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
827
828
829
830
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

831
832
833
834
835
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

836
837
838
        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as
        # their prefixes.
839
840
841
842
843
844
        logger.info(f"Loading {cls.unet_name}.")
        unet.load_lora_adapter(
            state_dict,
            prefix=cls.unet_name,
            network_alphas=network_alphas,
            adapter_name=adapter_name,
845
            metadata=metadata,
846
847
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
848
            hotswap=hotswap,
849
        )
850
851
852
853
854
855
856
857
858
859
860
861

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
862
        low_cpu_mem_usage=False,
863
        hotswap: bool = False,
864
        metadata=None,
865
866
867
868
869
870
871
872
873
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
874
875
876
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
877
878
879
880
881
882
883
884
885
886
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
887
888
889
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
890
891
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
892
893
894
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
895
        """
896
897
898
899
900
901
902
903
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
904
            metadata=metadata,
905
906
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
907
            hotswap=hotswap,
908
        )
909
910
911
912
913
914
915
916
917
918
919
920

    @classmethod
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
921
922
923
        unet_lora_adapter_metadata=None,
        text_encoder_lora_adapter_metadata=None,
        text_encoder_2_lora_adapter_metadata=None,
924
925
    ):
        r"""
926
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
927
        """
928
929
        lora_layers = {}
        lora_metadata = {}
930
931

        if unet_lora_layers:
932
933
            lora_layers[cls.unet_name] = unet_lora_layers
            lora_metadata[cls.unet_name] = unet_lora_adapter_metadata
934
935

        if text_encoder_lora_layers:
936
937
            lora_layers["text_encoder"] = text_encoder_lora_layers
            lora_metadata["text_encoder"] = text_encoder_lora_adapter_metadata
938
939

        if text_encoder_2_lora_layers:
940
941
            lora_layers["text_encoder_2"] = text_encoder_2_lora_layers
            lora_metadata["text_encoder_2"] = text_encoder_2_lora_adapter_metadata
942

943
944
945
        if not lora_layers:
            raise ValueError(
                "You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers`, or `text_encoder_2_lora_layers`."
946
947
            )

948
        cls._save_lora_weights(
949
            save_directory=save_directory,
950
951
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def fuse_lora(
        self,
        components: List[str] = ["unet", "text_encoder", "text_encoder_2"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
967
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
968
969
        """
        super().fuse_lora(
970
971
972
973
974
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
975
976
977
978
        )

    def unfuse_lora(self, components: List[str] = ["unet", "text_encoder", "text_encoder_2"], **kwargs):
        r"""
979
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
980
        """
981
        super().unfuse_lora(components=components, **kwargs)
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004


class SD3LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`SD3Transformer2DModel`],
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and
    [`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection).

    Specific to [`StableDiffusion3Pipeline`].
    """

    _lora_loadable_modules = ["transformer", "text_encoder", "text_encoder_2"]
    transformer_name = TRANSFORMER_NAME
    text_encoder_name = TEXT_ENCODER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
1005
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
1018
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
1019
1020
1021
1022
1023
1024

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

1025
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
1026

1027
        state_dict, metadata = _fetch_state_dict(
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

Sayak Paul's avatar
Sayak Paul committed
1042
1043
1044
1045
1046
1047
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

1048
1049
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
1050
1051

    def load_lora_weights(
1052
1053
1054
1055
1056
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name=None,
        hotswap: bool = False,
        **kwargs,
1057
1058
    ):
        """
1059
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
1060
1061
1062
1063
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

1064
1065
1066
1067
1068
1069
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

1070
1071
1072
1073
1074
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
1075
1076
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
1077

Sayak Paul's avatar
Sayak Paul committed
1078
        is_correct_format = all("lora" in key for key in state_dict.keys())
1079
1080
1081
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

1082
1083
1084
1085
        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
1086
            metadata=metadata,
1087
1088
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1089
            hotswap=hotswap,
1090
1091
1092
1093
1094
1095
1096
1097
        )
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=None,
            text_encoder=self.text_encoder,
            prefix=self.text_encoder_name,
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
1098
            metadata=metadata,
1099
1100
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1101
            hotswap=hotswap,
1102
1103
1104
1105
1106
1107
1108
1109
        )
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=None,
            text_encoder=self.text_encoder_2,
            prefix=f"{self.text_encoder_name}_2",
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
1110
            metadata=metadata,
1111
1112
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1113
            hotswap=hotswap,
1114
        )
1115
1116

    @classmethod
1117
    def load_lora_into_transformer(
1118
1119
1120
1121
1122
1123
1124
1125
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
1126
    ):
1127
        """
1128
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
1129
        """
1130
1131
1132
1133
1134
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

1135
1136
1137
1138
1139
1140
        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
1141
            metadata=metadata,
1142
1143
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
1144
            hotswap=hotswap,
1145
        )
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
1158
        low_cpu_mem_usage=False,
1159
        hotswap: bool = False,
1160
        metadata=None,
1161
1162
1163
1164
1165
1166
1167
1168
1169
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
1170
1171
1172
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
1183
1184
1185
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
1186
1187
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
1188
1189
1190
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
1191
        """
1192
1193
1194
1195
1196
1197
1198
1199
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
1200
            metadata=metadata,
1201
1202
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
1203
            hotswap=hotswap,
1204
        )
1205
1206

    @classmethod
1207
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionXLLoraLoaderMixin.save_lora_weights with unet->transformer
1208
1209
1210
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
1211
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1212
1213
1214
1215
1216
1217
        text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
1218
1219
1220
        transformer_lora_adapter_metadata=None,
        text_encoder_lora_adapter_metadata=None,
        text_encoder_2_lora_adapter_metadata=None,
1221
1222
    ):
        r"""
1223
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
1224
        """
1225
1226
        lora_layers = {}
        lora_metadata = {}
1227
1228

        if transformer_lora_layers:
1229
1230
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
1231
1232

        if text_encoder_lora_layers:
1233
1234
            lora_layers["text_encoder"] = text_encoder_lora_layers
            lora_metadata["text_encoder"] = text_encoder_lora_adapter_metadata
1235
1236

        if text_encoder_2_lora_layers:
1237
1238
            lora_layers["text_encoder_2"] = text_encoder_2_lora_layers
            lora_metadata["text_encoder_2"] = text_encoder_2_lora_adapter_metadata
1239

1240
1241
1242
        if not lora_layers:
            raise ValueError(
                "You must pass at least one of `transformer_lora_layers`, `text_encoder_lora_layers`, or `text_encoder_2_lora_layers`."
1243
1244
            )

1245
        cls._save_lora_weights(
1246
            save_directory=save_directory,
1247
1248
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
1249
1250
1251
1252
1253
1254
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

1255
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionXLLoraLoaderMixin.fuse_lora with unet->transformer
1256
1257
1258
1259
1260
1261
1262
1263
1264
    def fuse_lora(
        self,
        components: List[str] = ["transformer", "text_encoder", "text_encoder_2"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
1265
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
1266
1267
        """
        super().fuse_lora(
1268
1269
1270
1271
1272
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
1273
1274
        )

1275
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionXLLoraLoaderMixin.unfuse_lora with unet->transformer
1276
1277
    def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder", "text_encoder_2"], **kwargs):
        r"""
1278
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
1279
        """
1280
        super().unfuse_lora(components=components, **kwargs)
1281
1282


1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
class AuraFlowLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`AuraFlowTransformer2DModel`] Specific to [`AuraFlowPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
1300
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
1313
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
1314
1315
1316
1317
1318
1319

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

1320
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
1321

1322
        state_dict, metadata = _fetch_state_dict(
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

1343
1344
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
1345
1346
1347

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
1348
1349
1350
1351
1352
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
1353
1354
    ):
        """
1355
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
1371
1372
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
1373
1374
1375
1376
1377
1378
1379
1380
1381

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
1382
            metadata=metadata,
1383
1384
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1385
            hotswap=hotswap,
1386
1387
1388
1389
1390
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->AuraFlowTransformer2DModel
    def load_lora_into_transformer(
1391
1392
1393
1394
1395
1396
1397
1398
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
1399
1400
    ):
        """
1401
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
1414
            metadata=metadata,
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
1430
        transformer_lora_adapter_metadata: Optional[dict] = None,
1431
1432
    ):
        r"""
1433
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
1434
        """
1435
1436
        lora_layers = {}
        lora_metadata = {}
1437

1438
1439
1440
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
1441

1442
1443
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
1444

1445
        cls._save_lora_weights(
1446
            save_directory=save_directory,
1447
1448
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
1465
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs):
        r"""
1478
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
1479
1480
1481
1482
        """
        super().unfuse_lora(components=components, **kwargs)


Sayak Paul's avatar
Sayak Paul committed
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
class FluxLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`FluxTransformer2DModel`],
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).

    Specific to [`StableDiffusion3Pipeline`].
    """

    _lora_loadable_modules = ["transformer", "text_encoder"]
    transformer_name = TRANSFORMER_NAME
    text_encoder_name = TEXT_ENCODER_NAME
Aryan's avatar
Aryan committed
1494
    _control_lora_supported_norm_keys = ["norm_q", "norm_k", "norm_added_q", "norm_added_k"]
Sayak Paul's avatar
Sayak Paul committed
1495
1496
1497
1498
1499
1500

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
1501
        return_alphas: bool = False,
Sayak Paul's avatar
Sayak Paul committed
1502
1503
1504
        **kwargs,
    ):
        r"""
1505
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
Sayak Paul's avatar
Sayak Paul committed
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
1518
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Sayak Paul's avatar
Sayak Paul committed
1519
1520
1521
1522
1523
1524

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

1525
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Sayak Paul's avatar
Sayak Paul committed
1526

1527
        state_dict, metadata = _fetch_state_dict(
Sayak Paul's avatar
Sayak Paul committed
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
Sayak Paul's avatar
Sayak Paul committed
1541
1542
1543
1544
1545
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
Sayak Paul's avatar
Sayak Paul committed
1546

1547
1548
1549
1550
1551
        # TODO (sayakpaul): to a follow-up to clean and try to unify the conditions.
        is_kohya = any(".lora_down.weight" in k for k in state_dict)
        if is_kohya:
            state_dict = _convert_kohya_flux_lora_to_diffusers(state_dict)
            # Kohya already takes care of scaling the LoRA parameters with alpha.
1552
1553
1554
1555
1556
1557
1558
            return cls._prepare_outputs(
                state_dict,
                metadata=metadata,
                alphas=None,
                return_alphas=return_alphas,
                return_metadata=return_lora_metadata,
            )
1559
1560
1561
1562
1563

        is_xlabs = any("processor" in k for k in state_dict)
        if is_xlabs:
            state_dict = _convert_xlabs_flux_lora_to_diffusers(state_dict)
            # xlabs doesn't use `alpha`.
1564
1565
1566
1567
1568
1569
1570
            return cls._prepare_outputs(
                state_dict,
                metadata=metadata,
                alphas=None,
                return_alphas=return_alphas,
                return_metadata=return_lora_metadata,
            )
1571

Aryan's avatar
Aryan committed
1572
1573
1574
        is_bfl_control = any("query_norm.scale" in k for k in state_dict)
        if is_bfl_control:
            state_dict = _convert_bfl_flux_control_lora_to_diffusers(state_dict)
1575
1576
1577
1578
1579
1580
1581
            return cls._prepare_outputs(
                state_dict,
                metadata=metadata,
                alphas=None,
                return_alphas=return_alphas,
                return_metadata=return_lora_metadata,
            )
Aryan's avatar
Aryan committed
1582

1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
        is_fal_kontext = any("base_model" in k for k in state_dict)
        if is_fal_kontext:
            state_dict = _convert_fal_kontext_lora_to_diffusers(state_dict)
            return cls._prepare_outputs(
                state_dict,
                metadata=metadata,
                alphas=None,
                return_alphas=return_alphas,
                return_metadata=return_lora_metadata,
            )

1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
        # For state dicts like
        # https://huggingface.co/TheLastBen/Jon_Snow_Flux_LoRA
        keys = list(state_dict.keys())
        network_alphas = {}
        for k in keys:
            if "alpha" in k:
                alpha_value = state_dict.get(k)
                if (torch.is_tensor(alpha_value) and torch.is_floating_point(alpha_value)) or isinstance(
                    alpha_value, float
                ):
                    network_alphas[k] = state_dict.pop(k)
                else:
                    raise ValueError(
                        f"The alpha key ({k}) seems to be incorrect. If you think this error is unexpected, please open as issue."
                    )

1610
        if return_alphas or return_lora_metadata:
1611
1612
1613
1614
1615
1616
1617
            return cls._prepare_outputs(
                state_dict,
                metadata=metadata,
                alphas=network_alphas,
                return_alphas=return_alphas,
                return_metadata=return_lora_metadata,
            )
1618
1619
        else:
            return state_dict
Sayak Paul's avatar
Sayak Paul committed
1620
1621

    def load_lora_weights(
1622
1623
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
1624
        adapter_name: Optional[str] = None,
1625
1626
        hotswap: bool = False,
        **kwargs,
Sayak Paul's avatar
Sayak Paul committed
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`.

        All kwargs are forwarded to `self.lora_state_dict`.

        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
        loaded.

        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
1646
1647
1648
            low_cpu_mem_usage (`bool`, *optional*):
                `Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
1649
1650
1651
1652
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
Sayak Paul's avatar
Sayak Paul committed
1653
1654
1655
1656
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

1657
1658
1659
1660
1661
1662
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

Sayak Paul's avatar
Sayak Paul committed
1663
1664
1665
1666
1667
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
1668
1669
        kwargs["return_lora_metadata"] = True
        state_dict, network_alphas, metadata = self.lora_state_dict(
1670
1671
            pretrained_model_name_or_path_or_dict, return_alphas=True, **kwargs
        )
Sayak Paul's avatar
Sayak Paul committed
1672

Aryan's avatar
Aryan committed
1673
1674
1675
1676
1677
1678
1679
1680
        has_lora_keys = any("lora" in key for key in state_dict.keys())

        # Flux Control LoRAs also have norm keys
        has_norm_keys = any(
            norm_key in key for key in state_dict.keys() for norm_key in self._control_lora_supported_norm_keys
        )

        if not (has_lora_keys or has_norm_keys):
Sayak Paul's avatar
Sayak Paul committed
1681
1682
            raise ValueError("Invalid LoRA checkpoint.")

Aryan's avatar
Aryan committed
1683
        transformer_lora_state_dict = {
1684
1685
1686
            k: state_dict.get(k)
            for k in list(state_dict.keys())
            if k.startswith(f"{self.transformer_name}.") and "lora" in k
Aryan's avatar
Aryan committed
1687
1688
1689
1690
        }
        transformer_norm_state_dict = {
            k: state_dict.pop(k)
            for k in list(state_dict.keys())
1691
1692
            if k.startswith(f"{self.transformer_name}.")
            and any(norm_key in k for norm_key in self._control_lora_supported_norm_keys)
Aryan's avatar
Aryan committed
1693
1694
1695
        }

        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
1696
1697
1698
1699
1700
        has_param_with_expanded_shape = False
        if len(transformer_lora_state_dict) > 0:
            has_param_with_expanded_shape = self._maybe_expand_transformer_param_shape_or_error_(
                transformer, transformer_lora_state_dict, transformer_norm_state_dict
            )
Aryan's avatar
Aryan committed
1701
1702
1703
1704
1705
1706
1707
1708

        if has_param_with_expanded_shape:
            logger.info(
                "The LoRA weights contain parameters that have different shapes that expected by the transformer. "
                "As a result, the state_dict of the transformer has been expanded to match the LoRA parameter shapes. "
                "To get a comprehensive list of parameter names that were modified, enable debug logging."
            )
        if len(transformer_lora_state_dict) > 0:
1709
1710
            transformer_lora_state_dict = self._maybe_expand_lora_state_dict(
                transformer=transformer, lora_state_dict=transformer_lora_state_dict
1711
            )
1712
1713
1714
1715
1716
1717
1718
1719
            for k in transformer_lora_state_dict:
                state_dict.update({k: transformer_lora_state_dict[k]})

        self.load_lora_into_transformer(
            state_dict,
            network_alphas=network_alphas,
            transformer=transformer,
            adapter_name=adapter_name,
1720
            metadata=metadata,
1721
1722
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1723
            hotswap=hotswap,
1724
        )
Sayak Paul's avatar
Sayak Paul committed
1725

Aryan's avatar
Aryan committed
1726
1727
1728
1729
1730
1731
1732
        if len(transformer_norm_state_dict) > 0:
            transformer._transformer_norm_layers = self._load_norm_into_transformer(
                transformer_norm_state_dict,
                transformer=transformer,
                discard_original_layers=False,
            )

1733
1734
1735
1736
1737
1738
1739
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=network_alphas,
            text_encoder=self.text_encoder,
            prefix=self.text_encoder_name,
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
1740
            metadata=metadata,
1741
1742
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1743
            hotswap=hotswap,
1744
        )
Sayak Paul's avatar
Sayak Paul committed
1745
1746

    @classmethod
1747
    def load_lora_into_transformer(
1748
1749
1750
1751
1752
        cls,
        state_dict,
        network_alphas,
        transformer,
        adapter_name=None,
1753
        metadata=None,
1754
1755
1756
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
1757
    ):
Sayak Paul's avatar
Sayak Paul committed
1758
        """
1759
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
Sayak Paul's avatar
Sayak Paul committed
1760
        """
1761
1762
1763
1764
1765
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

1766
        # Load the layers corresponding to transformer.
1767
1768
1769
1770
1771
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=network_alphas,
            adapter_name=adapter_name,
1772
            metadata=metadata,
1773
1774
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
1775
            hotswap=hotswap,
1776
        )
Sayak Paul's avatar
Sayak Paul committed
1777

Aryan's avatar
Aryan committed
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
    @classmethod
    def _load_norm_into_transformer(
        cls,
        state_dict,
        transformer,
        prefix=None,
        discard_original_layers=False,
    ) -> Dict[str, torch.Tensor]:
        # Remove prefix if present
        prefix = prefix or cls.transformer_name
        for key in list(state_dict.keys()):
            if key.split(".")[0] == prefix:
1790
                state_dict[key.removeprefix(f"{prefix}.")] = state_dict.pop(key)
Aryan's avatar
Aryan committed
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831

        # Find invalid keys
        transformer_state_dict = transformer.state_dict()
        transformer_keys = set(transformer_state_dict.keys())
        state_dict_keys = set(state_dict.keys())
        extra_keys = list(state_dict_keys - transformer_keys)

        if extra_keys:
            logger.warning(
                f"Unsupported keys found in state dict when trying to load normalization layers into the transformer. The following keys will be ignored:\n{extra_keys}."
            )

        for key in extra_keys:
            state_dict.pop(key)

        # Save the layers that are going to be overwritten so that unload_lora_weights can work as expected
        overwritten_layers_state_dict = {}
        if not discard_original_layers:
            for key in state_dict.keys():
                overwritten_layers_state_dict[key] = transformer_state_dict[key].clone()

        logger.info(
            "The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will directly update the state_dict of the transformer "
            'as opposed to the LoRA layers that will co-exist separately until the "fuse_lora()" method is called. That is to say, the normalization layers will always be directly '
            "fused into the transformer and can only be unfused if `discard_original_layers=True` is passed. This might also have implications when dealing with multiple LoRAs. "
            "If you notice something unexpected, please open an issue: https://github.com/huggingface/diffusers/issues."
        )

        # We can't load with strict=True because the current state_dict does not contain all the transformer keys
        incompatible_keys = transformer.load_state_dict(state_dict, strict=False)
        unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)

        # We shouldn't expect to see the supported norm keys here being present in the unexpected keys.
        if unexpected_keys:
            if any(norm_key in k for k in unexpected_keys for norm_key in cls._control_lora_supported_norm_keys):
                raise ValueError(
                    f"Found {unexpected_keys} as unexpected keys while trying to load norm layers into the transformer."
                )

        return overwritten_layers_state_dict

Sayak Paul's avatar
Sayak Paul committed
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
1843
        low_cpu_mem_usage=False,
1844
        hotswap: bool = False,
1845
        metadata=None,
Sayak Paul's avatar
Sayak Paul committed
1846
1847
1848
1849
1850
1851
1852
1853
1854
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
1855
1856
1857
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
Sayak Paul's avatar
Sayak Paul committed
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
1868
1869
1870
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
1871
1872
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
1873
1874
1875
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
Sayak Paul's avatar
Sayak Paul committed
1876
        """
1877
1878
1879
1880
1881
1882
1883
1884
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
1885
            metadata=metadata,
1886
1887
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
1888
            hotswap=hotswap,
1889
        )
Sayak Paul's avatar
Sayak Paul committed
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights with unet->transformer
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
1902
1903
        transformer_lora_adapter_metadata=None,
        text_encoder_lora_adapter_metadata=None,
Sayak Paul's avatar
Sayak Paul committed
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
    ):
        r"""
        Save the LoRA parameters corresponding to the UNet and text encoder.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
1926
1927
1928
1929
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
            text_encoder_lora_adapter_metadata:
                LoRA adapter metadata associated with the text encoder to be serialized with the state dict.
Sayak Paul's avatar
Sayak Paul committed
1930
        """
1931
1932
        lora_layers = {}
        lora_metadata = {}
Sayak Paul's avatar
Sayak Paul committed
1933
1934

        if transformer_lora_layers:
1935
1936
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
Sayak Paul's avatar
Sayak Paul committed
1937
1938

        if text_encoder_lora_layers:
1939
1940
            lora_layers[cls.text_encoder_name] = text_encoder_lora_layers
            lora_metadata[cls.text_encoder_name] = text_encoder_lora_adapter_metadata
Sayak Paul's avatar
Sayak Paul committed
1941

1942
1943
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
1944

1945
        cls._save_lora_weights(
Sayak Paul's avatar
Sayak Paul committed
1946
            save_directory=save_directory,
1947
1948
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
Sayak Paul's avatar
Sayak Paul committed
1949
1950
1951
1952
1953
1954
1955
1956
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def fuse_lora(
        self,
1957
        components: List[str] = ["transformer"],
Sayak Paul's avatar
Sayak Paul committed
1958
1959
1960
1961
1962
1963
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
1964
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
Sayak Paul's avatar
Sayak Paul committed
1965
        """
Aryan's avatar
Aryan committed
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978

        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
        if (
            hasattr(transformer, "_transformer_norm_layers")
            and isinstance(transformer._transformer_norm_layers, dict)
            and len(transformer._transformer_norm_layers.keys()) > 0
        ):
            logger.info(
                "The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will be directly updated the state_dict of the transformer "
                "as opposed to the LoRA layers that will co-exist separately until the 'fuse_lora()' method is called. That is to say, the normalization layers will always be directly "
                "fused into the transformer and can only be unfused if `discard_original_layers=True` is passed."
            )

Sayak Paul's avatar
Sayak Paul committed
1979
        super().fuse_lora(
1980
1981
1982
1983
1984
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Sayak Paul's avatar
Sayak Paul committed
1985
1986
1987
1988
1989
1990
1991
        )

    def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

Steven Liu's avatar
Steven Liu committed
1992
        > [!WARNING] > This is an experimental API.
Sayak Paul's avatar
Sayak Paul committed
1993
1994
1995
1996

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
        """
Aryan's avatar
Aryan committed
1997
1998
1999
2000
        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
        if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers:
            transformer.load_state_dict(transformer._transformer_norm_layers, strict=False)

2001
        super().unfuse_lora(components=components, **kwargs)
Sayak Paul's avatar
Sayak Paul committed
2002

2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
    # We override this here account for `_transformer_norm_layers` and `_overwritten_params`.
    def unload_lora_weights(self, reset_to_overwritten_params=False):
        """
        Unloads the LoRA parameters.

        Args:
            reset_to_overwritten_params (`bool`, defaults to `False`): Whether to reset the LoRA-loaded modules
                to their original params. Refer to the [Flux
                documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) to learn more.

        Examples:

        ```python
        >>> # Assuming `pipeline` is already loaded with the LoRA parameters.
        >>> pipeline.unload_lora_weights()
        >>> ...
        ```
        """
Aryan's avatar
Aryan committed
2021
2022
2023
2024
2025
2026
2027
        super().unload_lora_weights()

        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
        if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers:
            transformer.load_state_dict(transformer._transformer_norm_layers, strict=False)
            transformer._transformer_norm_layers = None

2028
        if reset_to_overwritten_params and getattr(transformer, "_overwritten_params", None) is not None:
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
            overwritten_params = transformer._overwritten_params
            module_names = set()

            for param_name in overwritten_params:
                if param_name.endswith(".weight"):
                    module_names.add(param_name.replace(".weight", ""))

            for name, module in transformer.named_modules():
                if isinstance(module, torch.nn.Linear) and name in module_names:
                    module_weight = module.weight.data
                    module_bias = module.bias.data if module.bias is not None else None
                    bias = module_bias is not None

                    parent_module_name, _, current_module_name = name.rpartition(".")
                    parent_module = transformer.get_submodule(parent_module_name)

                    current_param_weight = overwritten_params[f"{name}.weight"]
                    in_features, out_features = current_param_weight.shape[1], current_param_weight.shape[0]
                    with torch.device("meta"):
                        original_module = torch.nn.Linear(
                            in_features,
                            out_features,
                            bias=bias,
                            dtype=module_weight.dtype,
                        )

                    tmp_state_dict = {"weight": current_param_weight}
                    if module_bias is not None:
                        tmp_state_dict.update({"bias": overwritten_params[f"{name}.bias"]})
                    original_module.load_state_dict(tmp_state_dict, assign=True, strict=True)
                    setattr(parent_module, current_module_name, original_module)

                    del tmp_state_dict

                    if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX:
                        attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name]
                        new_value = int(current_param_weight.shape[1])
                        old_value = getattr(transformer.config, attribute_name)
                        setattr(transformer.config, attribute_name, new_value)
                        logger.info(
                            f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}."
                        )

Aryan's avatar
Aryan committed
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
    @classmethod
    def _maybe_expand_transformer_param_shape_or_error_(
        cls,
        transformer: torch.nn.Module,
        lora_state_dict=None,
        norm_state_dict=None,
        prefix=None,
    ) -> bool:
        """
        Control LoRA expands the shape of the input layer from (3072, 64) to (3072, 128). This method handles that and
2082
        generalizes things a bit so that any parameter that needs expansion receives appropriate treatment.
Aryan's avatar
Aryan committed
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
        """
        state_dict = {}
        if lora_state_dict is not None:
            state_dict.update(lora_state_dict)
        if norm_state_dict is not None:
            state_dict.update(norm_state_dict)

        # Remove prefix if present
        prefix = prefix or cls.transformer_name
        for key in list(state_dict.keys()):
            if key.split(".")[0] == prefix:
2094
                state_dict[key.removeprefix(f"{prefix}.")] = state_dict.pop(key)
Aryan's avatar
Aryan committed
2095
2096
2097

        # Expand transformer parameter shapes if they don't match lora
        has_param_with_shape_update = False
2098
2099
        overwritten_params = {}

2100
        is_peft_loaded = getattr(transformer, "peft_config", None) is not None
hlky's avatar
hlky committed
2101
        is_quantized = hasattr(transformer, "hf_quantizer")
Aryan's avatar
Aryan committed
2102
2103
2104
        for name, module in transformer.named_modules():
            if isinstance(module, torch.nn.Linear):
                module_weight = module.weight.data
2105
                module_bias = module.bias.data if module.bias is not None else None
Aryan's avatar
Aryan committed
2106
2107
                bias = module_bias is not None

2108
2109
2110
2111
                lora_base_name = name.replace(".base_layer", "") if is_peft_loaded else name
                lora_A_weight_name = f"{lora_base_name}.lora_A.weight"
                lora_B_weight_name = f"{lora_base_name}.lora_B.weight"
                if lora_A_weight_name not in state_dict:
Aryan's avatar
Aryan committed
2112
2113
2114
2115
2116
                    continue

                in_features = state_dict[lora_A_weight_name].shape[1]
                out_features = state_dict[lora_B_weight_name].shape[0]

2117
2118
2119
2120
2121
                # Model maybe loaded with different quantization schemes which may flatten the params.
                # `bitsandbytes`, for example, flatten the weights when using 4bit. 8bit bnb models
                # preserve weight shape.
                module_weight_shape = cls._calculate_module_shape(model=transformer, base_module=module)

Aryan's avatar
Aryan committed
2122
                # This means there's no need for an expansion in the params, so we simply skip.
2123
                if tuple(module_weight_shape) == (out_features, in_features):
Aryan's avatar
Aryan committed
2124
2125
                    continue

hlky's avatar
hlky committed
2126
                module_out_features, module_in_features = module_weight_shape
2127
2128
2129
2130
2131
2132
                debug_message = ""
                if in_features > module_in_features:
                    debug_message += (
                        f'Expanding the nn.Linear input/output features for module="{name}" because the provided LoRA '
                        f"checkpoint contains higher number of features than expected. The number of input_features will be "
                        f"expanded from {module_in_features} to {in_features}"
Aryan's avatar
Aryan committed
2133
                    )
2134
                if out_features > module_out_features:
2135
2136
2137
2138
2139
2140
                    debug_message += (
                        ", and the number of output features will be "
                        f"expanded from {module_out_features} to {out_features}."
                    )
                else:
                    debug_message += "."
2141
2142
2143
2144
2145
2146
2147
2148
                if debug_message:
                    logger.debug(debug_message)

                if out_features > module_out_features or in_features > module_in_features:
                    has_param_with_shape_update = True
                    parent_module_name, _, current_module_name = name.rpartition(".")
                    parent_module = transformer.get_submodule(parent_module_name)

hlky's avatar
hlky committed
2149
2150
2151
2152
                    if is_quantized:
                        module_weight = _maybe_dequantize_weight_for_expanded_lora(transformer, module)

                    # TODO: consider if this layer needs to be a quantized layer as well if `is_quantized` is True.
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
                    with torch.device("meta"):
                        expanded_module = torch.nn.Linear(
                            in_features, out_features, bias=bias, dtype=module_weight.dtype
                        )
                    # Only weights are expanded and biases are not. This is because only the input dimensions
                    # are changed while the output dimensions remain the same. The shape of the weight tensor
                    # is (out_features, in_features), while the shape of bias tensor is (out_features,), which
                    # explains the reason why only weights are expanded.
                    new_weight = torch.zeros_like(
                        expanded_module.weight.data, device=module_weight.device, dtype=module_weight.dtype
                    )
hlky's avatar
hlky committed
2164
                    slices = tuple(slice(0, dim) for dim in module_weight_shape)
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
                    new_weight[slices] = module_weight
                    tmp_state_dict = {"weight": new_weight}
                    if module_bias is not None:
                        tmp_state_dict["bias"] = module_bias
                    expanded_module.load_state_dict(tmp_state_dict, strict=True, assign=True)

                    setattr(parent_module, current_module_name, expanded_module)

                    del tmp_state_dict

                    if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX:
                        attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name]
                        new_value = int(expanded_module.weight.data.shape[1])
                        old_value = getattr(transformer.config, attribute_name)
                        setattr(transformer.config, attribute_name, new_value)
                        logger.info(
                            f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}."
                        )
Aryan's avatar
Aryan committed
2183

2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
                    # For `unload_lora_weights()`.
                    # TODO: this could lead to more memory overhead if the number of overwritten params
                    # are large. Should be revisited later and tackled through a `discard_original_layers` arg.
                    overwritten_params[f"{current_module_name}.weight"] = module_weight
                    if module_bias is not None:
                        overwritten_params[f"{current_module_name}.bias"] = module_bias

        if len(overwritten_params) > 0:
            transformer._overwritten_params = overwritten_params

2194
        return has_param_with_shape_update
Aryan's avatar
Aryan committed
2195

2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
    @classmethod
    def _maybe_expand_lora_state_dict(cls, transformer, lora_state_dict):
        expanded_module_names = set()
        transformer_state_dict = transformer.state_dict()
        prefix = f"{cls.transformer_name}."

        lora_module_names = [
            key[: -len(".lora_A.weight")] for key in lora_state_dict if key.endswith(".lora_A.weight")
        ]
        lora_module_names = [name[len(prefix) :] for name in lora_module_names if name.startswith(prefix)]
        lora_module_names = sorted(set(lora_module_names))
        transformer_module_names = sorted({name for name, _ in transformer.named_modules()})
        unexpected_modules = set(lora_module_names) - set(transformer_module_names)
        if unexpected_modules:
            logger.debug(f"Found unexpected modules: {unexpected_modules}. These will be ignored.")

        for k in lora_module_names:
            if k in unexpected_modules:
                continue

            base_param_name = (
2217
                f"{k.replace(prefix, '')}.base_layer.weight"
2218
                if f"{k.replace(prefix, '')}.base_layer.weight" in transformer_state_dict
2219
                else f"{k.replace(prefix, '')}.weight"
2220
2221
2222
2223
            )
            base_weight_param = transformer_state_dict[base_param_name]
            lora_A_param = lora_state_dict[f"{prefix}{k}.lora_A.weight"]

2224
2225
2226
2227
            # TODO (sayakpaul): Handle the cases when we actually need to expand when using quantization.
            base_module_shape = cls._calculate_module_shape(model=transformer, base_weight_param_name=base_param_name)

            if base_module_shape[1] > lora_A_param.shape[1]:
2228
2229
2230
2231
2232
                shape = (lora_A_param.shape[0], base_weight_param.shape[1])
                expanded_state_dict_weight = torch.zeros(shape, device=base_weight_param.device)
                expanded_state_dict_weight[:, : lora_A_param.shape[1]].copy_(lora_A_param)
                lora_state_dict[f"{prefix}{k}.lora_A.weight"] = expanded_state_dict_weight
                expanded_module_names.add(k)
2233
            elif base_module_shape[1] < lora_A_param.shape[1]:
2234
2235
                raise NotImplementedError(
                    f"This LoRA param ({k}.lora_A.weight) has an incompatible shape {lora_A_param.shape}. Please open an issue to file for a feature request - https://github.com/huggingface/diffusers/issues/new."
Aryan's avatar
Aryan committed
2236
2237
                )

2238
2239
2240
2241
        if expanded_module_names:
            logger.info(
                f"The following LoRA modules were zero padded to match the state dict of {cls.transformer_name}: {expanded_module_names}. Please open an issue if you think this was unexpected - https://github.com/huggingface/diffusers/issues/new."
            )
Aryan's avatar
Aryan committed
2242

2243
        return lora_state_dict
Aryan's avatar
Aryan committed
2244

2245
2246
2247
2248
2249
2250
2251
    @staticmethod
    def _calculate_module_shape(
        model: "torch.nn.Module",
        base_module: "torch.nn.Linear" = None,
        base_weight_param_name: str = None,
    ) -> "torch.Size":
        def _get_weight_shape(weight: torch.Tensor):
hlky's avatar
hlky committed
2252
2253
2254
2255
2256
2257
            if weight.__class__.__name__ == "Params4bit":
                return weight.quant_state.shape
            elif weight.__class__.__name__ == "GGUFParameter":
                return weight.quant_shape
            else:
                return weight.shape
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271

        if base_module is not None:
            return _get_weight_shape(base_module.weight)
        elif base_weight_param_name is not None:
            if not base_weight_param_name.endswith(".weight"):
                raise ValueError(
                    f"Invalid `base_weight_param_name` passed as it does not end with '.weight' {base_weight_param_name=}."
                )
            module_path = base_weight_param_name.rsplit(".weight", 1)[0]
            submodule = get_submodule_by_name(model, module_path)
            return _get_weight_shape(submodule.weight)

        raise ValueError("Either `base_module` or `base_weight_param_name` must be provided.")

2272
2273
2274
2275
2276
2277
2278
2279
2280
    @staticmethod
    def _prepare_outputs(state_dict, metadata, alphas=None, return_alphas=False, return_metadata=False):
        outputs = [state_dict]
        if return_alphas:
            outputs.append(alphas)
        if return_metadata:
            outputs.append(metadata)
        return tuple(outputs) if (return_alphas or return_metadata) else state_dict

Sayak Paul's avatar
Sayak Paul committed
2281

2282
2283
2284
2285
2286
2287
# The reason why we subclass from `StableDiffusionLoraLoaderMixin` here is because Amused initially
# relied on `StableDiffusionLoraLoaderMixin` for its LoRA support.
class AmusedLoraLoaderMixin(StableDiffusionLoraLoaderMixin):
    _lora_loadable_modules = ["transformer", "text_encoder"]
    transformer_name = TRANSFORMER_NAME
    text_encoder_name = TEXT_ENCODER_NAME
Dhruv Nair's avatar
Dhruv Nair committed
2288
2289

    @classmethod
2290
2291
    # Copied from diffusers.loaders.lora_pipeline.FluxLoraLoaderMixin.load_lora_into_transformer with FluxTransformer2DModel->UVit2DModel
    def load_lora_into_transformer(
2292
2293
2294
2295
2296
        cls,
        state_dict,
        network_alphas,
        transformer,
        adapter_name=None,
2297
        metadata=None,
2298
2299
2300
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
2301
    ):
Dhruv Nair's avatar
Dhruv Nair committed
2302
        """
2303
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
Dhruv Nair's avatar
Dhruv Nair committed
2304
        """
2305
2306
2307
2308
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )
Dhruv Nair's avatar
Dhruv Nair committed
2309

2310
        # Load the layers corresponding to transformer.
2311
2312
2313
2314
2315
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=network_alphas,
            adapter_name=adapter_name,
2316
            metadata=metadata,
2317
2318
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2319
            hotswap=hotswap,
2320
        )
Dhruv Nair's avatar
Dhruv Nair committed
2321

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
2333
        low_cpu_mem_usage=False,
2334
        hotswap: bool = False,
2335
        metadata=None,
2336
2337
2338
2339
2340
2341
2342
2343
2344
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
2345
2346
2347
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
2358
2359
2360
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
2361
2362
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
2363
2364
2365
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
2366
        """
2367
2368
2369
2370
2371
2372
2373
2374
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
2375
            metadata=metadata,
2376
2377
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2378
            hotswap=hotswap,
2379
        )
2380

Dhruv Nair's avatar
Dhruv Nair committed
2381
2382
2383
2384
    @classmethod
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
2385
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
Dhruv Nair's avatar
Dhruv Nair committed
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
        transformer_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
    ):
        r"""
        Save the LoRA parameters corresponding to the UNet and text encoder.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
2398
2399
2400
2401
2402
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
Dhruv Nair's avatar
Dhruv Nair committed
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
        """
        state_dict = {}

2416
2417
        if not (transformer_lora_layers or text_encoder_lora_layers):
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
Dhruv Nair's avatar
Dhruv Nair committed
2418
2419

        if transformer_lora_layers:
2420
            state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
Dhruv Nair's avatar
Dhruv Nair committed
2421

2422
        if text_encoder_lora_layers:
2423
            state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name))
2424

Dhruv Nair's avatar
Dhruv Nair committed
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

2435

Aryan's avatar
Aryan committed
2436
2437
class CogVideoXLoraLoaderMixin(LoraBaseMixin):
    r"""
2438
    Load LoRA layers into [`CogVideoXTransformer3DModel`]. Specific to [`CogVideoXPipeline`].
Aryan's avatar
Aryan committed
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
2453
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
Aryan's avatar
Aryan committed
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
2466
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Aryan's avatar
Aryan committed
2467
2468
2469
2470
2471
2472

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

2473
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Aryan's avatar
Aryan committed
2474

2475
        state_dict, metadata = _fetch_state_dict(
Aryan's avatar
Aryan committed
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

Sayak Paul's avatar
Sayak Paul committed
2490
2491
2492
2493
2494
2495
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

2496
2497
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
Aryan's avatar
Aryan committed
2498
2499

    def load_lora_weights(
2500
2501
2502
2503
2504
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
Aryan's avatar
Aryan committed
2505
2506
    ):
        """
2507
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
Aryan's avatar
Aryan committed
2508
2509
2510
2511
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

2512
2513
2514
2515
2516
2517
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

Aryan's avatar
Aryan committed
2518
2519
2520
2521
2522
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
2523
2524
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
Aryan's avatar
Aryan committed
2525

Sayak Paul's avatar
Sayak Paul committed
2526
        is_correct_format = all("lora" in key for key in state_dict.keys())
Aryan's avatar
Aryan committed
2527
2528
2529
2530
2531
2532
2533
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
2534
            metadata=metadata,
Aryan's avatar
Aryan committed
2535
            _pipeline=self,
2536
            low_cpu_mem_usage=low_cpu_mem_usage,
2537
            hotswap=hotswap,
Aryan's avatar
Aryan committed
2538
2539
2540
        )

    @classmethod
2541
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->CogVideoXTransformer3DModel
2542
    def load_lora_into_transformer(
2543
2544
2545
2546
2547
2548
2549
2550
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
2551
    ):
Aryan's avatar
Aryan committed
2552
        """
2553
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
Aryan's avatar
Aryan committed
2554
        """
2555
2556
2557
2558
2559
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

2560
2561
2562
2563
2564
2565
        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
2566
            metadata=metadata,
2567
2568
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2569
            hotswap=hotswap,
2570
        )
Aryan's avatar
Aryan committed
2571
2572
2573
2574
2575
2576

    @classmethod
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
2577
2578
2579
2580
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
2581
        transformer_lora_adapter_metadata: Optional[dict] = None,
2582
2583
    ):
        r"""
2584
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
2585
        """
2586
2587
        lora_layers = {}
        lora_metadata = {}
2588

2589
2590
2591
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
2592

2593
2594
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
2595

2596
        cls._save_lora_weights(
2597
            save_directory=save_directory,
2598
2599
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
2600
2601
2602
2603
2604
2605
2606
2607
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def fuse_lora(
        self,
2608
        components: List[str] = ["transformer"],
2609
2610
2611
2612
2613
2614
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
2615
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
2616
2617
        """
        super().fuse_lora(
2618
2619
2620
2621
2622
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
2623
2624
        )

2625
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
2626
        r"""
2627
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
2628
        """
2629
        super().unfuse_lora(components=components, **kwargs)
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648


class Mochi1LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`MochiTransformer3DModel`]. Specific to [`MochiPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
2649
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
2662
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
2663
2664
2665
2666
2667
2668

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

2669
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
2670

2671
        state_dict, metadata = _fetch_state_dict(
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

2692
2693
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
2694
2695
2696

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
2697
2698
2699
2700
2701
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
2702
2703
    ):
        """
2704
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
2720
2721
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
2722
2723
2724
2725
2726
2727
2728
2729
2730

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
2731
            metadata=metadata,
2732
2733
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
2734
            hotswap=hotswap,
2735
2736
2737
        )

    @classmethod
2738
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->MochiTransformer3DModel
2739
    def load_lora_into_transformer(
2740
2741
2742
2743
2744
2745
2746
2747
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
2748
2749
    ):
        """
2750
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
Aryan's avatar
Aryan committed
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
2763
            metadata=metadata,
Aryan's avatar
Aryan committed
2764
2765
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2766
            hotswap=hotswap,
Aryan's avatar
Aryan committed
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
2779
        transformer_lora_adapter_metadata: Optional[dict] = None,
Aryan's avatar
Aryan committed
2780
2781
    ):
        r"""
2782
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
Aryan's avatar
Aryan committed
2783
        """
2784
2785
        lora_layers = {}
        lora_metadata = {}
Aryan's avatar
Aryan committed
2786

2787
2788
2789
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
2790

2791
2792
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
Aryan's avatar
Aryan committed
2793

2794
        cls._save_lora_weights(
Aryan's avatar
Aryan committed
2795
            save_directory=save_directory,
2796
2797
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
Aryan's avatar
Aryan committed
2798
2799
2800
2801
2802
2803
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

2804
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
Aryan's avatar
Aryan committed
2805
2806
    def fuse_lora(
        self,
2807
        components: List[str] = ["transformer"],
Aryan's avatar
Aryan committed
2808
2809
2810
2811
2812
2813
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
2814
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
Aryan's avatar
Aryan committed
2815
2816
        """
        super().fuse_lora(
2817
2818
2819
2820
2821
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Aryan's avatar
Aryan committed
2822
2823
        )

2824
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
2825
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
Aryan's avatar
Aryan committed
2826
        r"""
2827
2828
2829
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
        """
        super().unfuse_lora(components=components, **kwargs)
Aryan's avatar
Aryan committed
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847


class LTXVideoLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`LTXVideoTransformer3DModel`]. Specific to [`LTXPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
2848
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
Aryan's avatar
Aryan committed
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
2861
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Aryan's avatar
Aryan committed
2862
2863
2864
2865
2866
2867

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

2868
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Aryan's avatar
Aryan committed
2869

2870
        state_dict, metadata = _fetch_state_dict(
Aryan's avatar
Aryan committed
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

2891
2892
2893
2894
        is_non_diffusers_format = any(k.startswith("diffusion_model.") for k in state_dict)
        if is_non_diffusers_format:
            state_dict = _convert_non_diffusers_ltxv_lora_to_diffusers(state_dict)

2895
2896
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
Aryan's avatar
Aryan committed
2897
2898
2899

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
2900
2901
2902
2903
2904
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
Aryan's avatar
Aryan committed
2905
2906
    ):
        """
2907
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
Aryan's avatar
Aryan committed
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
2923
2924
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
Aryan's avatar
Aryan committed
2925
2926
2927
2928
2929
2930
2931
2932
2933

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
2934
            metadata=metadata,
Aryan's avatar
Aryan committed
2935
2936
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
2937
            hotswap=hotswap,
Aryan's avatar
Aryan committed
2938
2939
2940
2941
2942
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->LTXVideoTransformer3DModel
    def load_lora_into_transformer(
2943
2944
2945
2946
2947
2948
2949
2950
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
Aryan's avatar
Aryan committed
2951
2952
    ):
        """
2953
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
2966
            metadata=metadata,
2967
2968
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2969
            hotswap=hotswap,
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
2982
        transformer_lora_adapter_metadata: Optional[dict] = None,
2983
2984
    ):
        r"""
2985
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
2986
        """
2987
2988
        lora_layers = {}
        lora_metadata = {}
2989

2990
2991
2992
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
2993

2994
2995
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
2996

2997
        cls._save_lora_weights(
2998
            save_directory=save_directory,
2999
3000
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
3001
3002
3003
3004
3005
3006
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

3007
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
3008
3009
    def fuse_lora(
        self,
3010
        components: List[str] = ["transformer"],
3011
3012
3013
3014
3015
3016
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
3017
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
3018
3019
        """
        super().fuse_lora(
3020
3021
3022
3023
3024
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
3025
3026
        )

3027
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
3028
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
3029
        r"""
3030
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
3031
        """
3032
        super().unfuse_lora(components=components, **kwargs)
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051


class SanaLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`SanaTransformer2DModel`]. Specific to [`SanaPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
3052
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
3065
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
3066
3067
3068
3069
3070
3071

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

3072
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
3073

3074
        state_dict, metadata = _fetch_state_dict(
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

3095
3096
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
3097
3098
3099

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
3100
3101
3102
3103
3104
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
3105
3106
    ):
        """
3107
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
3123
3124
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
3125
3126
3127
3128
3129
3130
3131
3132
3133

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
3134
            metadata=metadata,
3135
3136
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
3137
            hotswap=hotswap,
3138
3139
3140
3141
3142
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->SanaTransformer2DModel
    def load_lora_into_transformer(
3143
3144
3145
3146
3147
3148
3149
3150
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
3151
3152
    ):
        """
3153
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
3166
            metadata=metadata,
3167
3168
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
3169
            hotswap=hotswap,
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
3182
        transformer_lora_adapter_metadata: Optional[dict] = None,
3183
3184
    ):
        r"""
3185
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
3186
        """
3187
3188
        lora_layers = {}
        lora_metadata = {}
3189

3190
3191
3192
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
3193

3194
3195
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
3196

3197
        cls._save_lora_weights(
3198
            save_directory=save_directory,
3199
3200
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
3201
3202
3203
3204
3205
3206
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

3207
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
3208
3209
    def fuse_lora(
        self,
3210
        components: List[str] = ["transformer"],
3211
3212
3213
3214
3215
3216
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
3217
3218
3219
3220
3221
3222
3223
3224
3225
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )
3226

3227
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
3228
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
3229
        r"""
3230
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
3231
        """
3232
        super().unfuse_lora(components=components, **kwargs)
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250


class HunyuanVideoLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`HunyuanVideoTransformer3DModel`]. Specific to [`HunyuanVideoPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
3251
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
3264
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
3265
3266
3267
3268
3269
3270

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

3271
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
3272

3273
        state_dict, metadata = _fetch_state_dict(
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

3294
3295
3296
3297
        is_original_hunyuan_video = any("img_attn_qkv" in k for k in state_dict)
        if is_original_hunyuan_video:
            state_dict = _convert_hunyuan_video_lora_to_diffusers(state_dict)

3298
3299
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
3300
3301
3302

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
3303
3304
3305
3306
3307
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
3308
3309
    ):
        """
3310
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
3326
3327
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
3328
3329
3330
3331
3332
3333
3334
3335
3336

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
3337
            metadata=metadata,
3338
3339
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
3340
            hotswap=hotswap,
3341
3342
3343
3344
3345
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->HunyuanVideoTransformer3DModel
    def load_lora_into_transformer(
3346
3347
3348
3349
3350
3351
3352
3353
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
3354
3355
    ):
        """
3356
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
3369
            metadata=metadata,
3370
3371
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
3372
            hotswap=hotswap,
3373
3374
3375
3376
3377
3378
3379
3380
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
Aryan's avatar
Aryan committed
3381
3382
3383
3384
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
3385
        transformer_lora_adapter_metadata: Optional[dict] = None,
Aryan's avatar
Aryan committed
3386
3387
    ):
        r"""
3388
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
Aryan's avatar
Aryan committed
3389
        """
3390
3391
        lora_layers = {}
        lora_metadata = {}
Aryan's avatar
Aryan committed
3392

3393
3394
3395
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
3396

3397
3398
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
Aryan's avatar
Aryan committed
3399

3400
        cls._save_lora_weights(
Aryan's avatar
Aryan committed
3401
            save_directory=save_directory,
3402
3403
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
Aryan's avatar
Aryan committed
3404
3405
3406
3407
3408
3409
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

3410
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
Aryan's avatar
Aryan committed
3411
3412
    def fuse_lora(
        self,
3413
        components: List[str] = ["transformer"],
Aryan's avatar
Aryan committed
3414
3415
3416
3417
3418
3419
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
3420
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
Aryan's avatar
Aryan committed
3421
3422
        """
        super().fuse_lora(
3423
3424
3425
3426
3427
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Aryan's avatar
Aryan committed
3428
3429
        )

3430
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
3431
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
Aryan's avatar
Aryan committed
3432
        r"""
3433
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
Aryan's avatar
Aryan committed
3434
        """
3435
        super().unfuse_lora(components=components, **kwargs)
Aryan's avatar
Aryan committed
3436
3437


3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
class Lumina2LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`Lumina2Transformer2DModel`]. Specific to [`Lumina2Text2ImgPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
3454
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
3467
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
3468
3469
3470
3471
3472
3473

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

3474
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
3475

3476
        state_dict, metadata = _fetch_state_dict(
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

3497
3498
3499
3500
3501
        # conversion.
        non_diffusers = any(k.startswith("diffusion_model.") for k in state_dict)
        if non_diffusers:
            state_dict = _convert_non_diffusers_lumina2_lora_to_diffusers(state_dict)

3502
3503
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
3504
3505
3506

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
3507
3508
3509
3510
3511
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
3512
3513
    ):
        """
3514
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
3530
3531
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
3532
3533
3534
3535
3536
3537
3538
3539
3540

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
3541
            metadata=metadata,
3542
3543
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
3544
            hotswap=hotswap,
3545
3546
3547
3548
3549
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->Lumina2Transformer2DModel
    def load_lora_into_transformer(
3550
3551
3552
3553
3554
3555
3556
3557
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
3558
3559
    ):
        """
3560
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
3573
            metadata=metadata,
3574
3575
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
3576
            hotswap=hotswap,
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
3589
        transformer_lora_adapter_metadata: Optional[dict] = None,
3590
3591
    ):
        r"""
3592
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
3593
        """
3594
3595
        lora_layers = {}
        lora_metadata = {}
3596

3597
3598
3599
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
3600

3601
3602
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
3603

3604
        cls._save_lora_weights(
3605
            save_directory=save_directory,
3606
3607
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
3624
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
3625
3626
        """
        super().fuse_lora(
3627
3628
3629
3630
3631
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
3632
3633
3634
3635
3636
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
3637
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
3638
        """
3639
        super().unfuse_lora(components=components, **kwargs)
3640
3641


3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
class KandinskyLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`Kandinsky5Transformer3DModel`],
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        Return state dict for lora weights and the network alphas.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:
                    - A string, the *model id* of a pretrained model hosted on the Hub.
                    - A path to a *directory* containing the model weights.
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository.
            weight_name (`str`, *optional*, defaults to None):
                Name of the serialized state dict file.
            use_safetensors (`bool`, *optional*):
                Whether to use safetensors for loading.
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata.
        """
        # Load the main state dict first which has the LoRA layers
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}

        state_dict, metadata = _fetch_state_dict(
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out

    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer`

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.KandinskyLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model.
            hotswap (`bool`, *optional*):
                Whether to substitute an existing (LoRA) adapter with the newly loaded adapter in-place.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
            kwargs (`dict`, *optional*):
                See [`~loaders.KandinskyLoraLoaderMixin.lora_state_dict`].
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        # Load LoRA into transformer
        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
            metadata=metadata,
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    def load_lora_into_transformer(
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
    ):
        """
        Load the LoRA layers specified in `state_dict` into `transformer`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters.
            transformer (`Kandinsky5Transformer3DModel`):
                The transformer model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model.
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights.
            hotswap (`bool`, *optional*):
                See [`~loaders.KandinskyLoraLoaderMixin.load_lora_weights`].
            metadata (`dict`):
                Optional LoRA adapter metadata.
        """
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
            metadata=metadata,
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
        transformer_lora_adapter_metadata=None,
    ):
        r"""
        Save the LoRA parameters corresponding to the transformer and text encoders.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process.
            save_function (`Callable`):
                The function to use to save the state dictionary.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way.
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer.
        """
        lora_layers = {}
        lora_metadata = {}

        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata

        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers`")

        cls._save_lora_weights(
            save_directory=save_directory,
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        Args:
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing.

        Example:
        ```py
        from diffusers import Kandinsky5T2VPipeline

        pipeline = Kandinsky5T2VPipeline.from_pretrained("ai-forever/Kandinsky-5.0-T2V")
        pipeline.load_lora_weights("path/to/lora.safetensors")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )

    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
        Reverses the effect of [`pipe.fuse_lora()`].

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
        """
        super().unfuse_lora(components=components, **kwargs)


Aryan's avatar
Aryan committed
3927
3928
3929
3930
3931
class WanLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`WanTransformer3DModel`]. Specific to [`WanPipeline`] and `[WanImageToVideoPipeline`].
    """

3932
    _lora_loadable_modules = ["transformer", "transformer_2"]
Aryan's avatar
Aryan committed
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
3943
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
Aryan's avatar
Aryan committed
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
3956
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Aryan's avatar
Aryan committed
3957
3958
3959
3960
3961
3962

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

3963
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Aryan's avatar
Aryan committed
3964

3965
        state_dict, metadata = _fetch_state_dict(
Aryan's avatar
Aryan committed
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
3979
3980
        if any(k.startswith("diffusion_model.") for k in state_dict):
            state_dict = _convert_non_diffusers_wan_lora_to_diffusers(state_dict)
3981
3982
        elif any(k.startswith("lora_unet_") for k in state_dict):
            state_dict = _convert_musubi_wan_lora_to_diffusers(state_dict)
Aryan's avatar
Aryan committed
3983
3984
3985
3986
3987
3988
3989

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

3990
3991
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
Aryan's avatar
Aryan committed
3992

3993
3994
3995
3996
3997
3998
3999
4000
4001
    @classmethod
    def _maybe_expand_t2v_lora_for_i2v(
        cls,
        transformer: torch.nn.Module,
        state_dict,
    ):
        if transformer.config.image_dim is None:
            return state_dict

4002
4003
        target_device = transformer.device

4004
        if any(k.startswith("transformer.blocks.") for k in state_dict):
4005
            num_blocks = len({k.split("blocks.")[1].split(".")[0] for k in state_dict if "blocks." in k})
4006
            is_i2v_lora = any("add_k_proj" in k for k in state_dict) and any("add_v_proj" in k for k in state_dict)
4007
            has_bias = any(".lora_B.bias" in k for k in state_dict)
4008
4009
4010
4011
4012
4013

            if is_i2v_lora:
                return state_dict

            for i in range(num_blocks):
                for o, c in zip(["k_img", "v_img"], ["add_k_proj", "add_v_proj"]):
4014
4015
4016
4017
4018
4019
4020
                    # These keys should exist if the block `i` was part of the T2V LoRA.
                    ref_key_lora_A = f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"
                    ref_key_lora_B = f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"

                    if ref_key_lora_A not in state_dict or ref_key_lora_B not in state_dict:
                        continue

4021
                    state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_A.weight"] = torch.zeros_like(
4022
                        state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"], device=target_device
4023
4024
                    )
                    state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.weight"] = torch.zeros_like(
4025
                        state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"], device=target_device
4026
4027
                    )

4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
                    # If the original LoRA had biases (indicated by has_bias)
                    # AND the specific reference bias key exists for this block.

                    ref_key_lora_B_bias = f"transformer.blocks.{i}.attn2.to_k.lora_B.bias"
                    if has_bias and ref_key_lora_B_bias in state_dict:
                        ref_lora_B_bias_tensor = state_dict[ref_key_lora_B_bias]
                        state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.bias"] = torch.zeros_like(
                            ref_lora_B_bias_tensor,
                            device=target_device,
                        )

4039
4040
        return state_dict

Aryan's avatar
Aryan committed
4041
    def load_lora_weights(
4042
4043
4044
4045
4046
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
Aryan's avatar
Aryan committed
4047
4048
    ):
        """
4049
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
Aryan's avatar
Aryan committed
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
4065
4066
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
4067
4068
4069
4070
4071
        # convert T2V LoRA to I2V LoRA (when loaded to Wan I2V) by adding zeros for the additional (missing) _img layers
        state_dict = self._maybe_expand_t2v_lora_for_i2v(
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            state_dict=state_dict,
        )
Aryan's avatar
Aryan committed
4072
4073
4074
4075
        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
        load_into_transformer_2 = kwargs.pop("load_into_transformer_2", False)
        if load_into_transformer_2:
            if not hasattr(self, "transformer_2"):
                raise AttributeError(
                    f"'{type(self).__name__}' object has no attribute transformer_2"
                    "Note that Wan2.1 models do not have a transformer_2 component."
                    "Ensure the model has a transformer_2 component before setting load_into_transformer_2=True."
                )
            self.load_lora_into_transformer(
                state_dict,
                transformer=self.transformer_2,
                adapter_name=adapter_name,
                metadata=metadata,
                _pipeline=self,
                low_cpu_mem_usage=low_cpu_mem_usage,
                hotswap=hotswap,
            )
        else:
            self.load_lora_into_transformer(
                state_dict,
                transformer=getattr(self, self.transformer_name)
                if not hasattr(self, "transformer")
                else self.transformer,
                adapter_name=adapter_name,
                metadata=metadata,
                _pipeline=self,
                low_cpu_mem_usage=low_cpu_mem_usage,
                hotswap=hotswap,
            )
Aryan's avatar
Aryan committed
4105
4106
4107
4108

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->WanTransformer3DModel
    def load_lora_into_transformer(
4109
4110
4111
4112
4113
4114
4115
4116
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
Aryan's avatar
Aryan committed
4117
4118
    ):
        """
4119
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
            metadata=metadata,
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
        transformer_lora_adapter_metadata: Optional[dict] = None,
    ):
        r"""
4151
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
4152
        """
4153
4154
        lora_layers = {}
        lora_metadata = {}
4155

4156
4157
4158
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
4159

4160
4161
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
4162

4163
        cls._save_lora_weights(
4164
            save_directory=save_directory,
4165
4166
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
4183
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
4196
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
        """
        super().unfuse_lora(components=components, **kwargs)


class SkyReelsV2LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`SkyReelsV2Transformer3DModel`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.WanLoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
4218
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}

        state_dict, metadata = _fetch_state_dict(
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
        if any(k.startswith("diffusion_model.") for k in state_dict):
            state_dict = _convert_non_diffusers_wan_lora_to_diffusers(state_dict)
        elif any(k.startswith("lora_unet_") for k in state_dict):
            state_dict = _convert_musubi_wan_lora_to_diffusers(state_dict)

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.WanLoraLoaderMixin._maybe_expand_t2v_lora_for_i2v
    def _maybe_expand_t2v_lora_for_i2v(
        cls,
        transformer: torch.nn.Module,
        state_dict,
    ):
        if transformer.config.image_dim is None:
            return state_dict

        target_device = transformer.device

        if any(k.startswith("transformer.blocks.") for k in state_dict):
            num_blocks = len({k.split("blocks.")[1].split(".")[0] for k in state_dict if "blocks." in k})
            is_i2v_lora = any("add_k_proj" in k for k in state_dict) and any("add_v_proj" in k for k in state_dict)
            has_bias = any(".lora_B.bias" in k for k in state_dict)

            if is_i2v_lora:
                return state_dict

            for i in range(num_blocks):
                for o, c in zip(["k_img", "v_img"], ["add_k_proj", "add_v_proj"]):
                    # These keys should exist if the block `i` was part of the T2V LoRA.
                    ref_key_lora_A = f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"
                    ref_key_lora_B = f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"

                    if ref_key_lora_A not in state_dict or ref_key_lora_B not in state_dict:
                        continue

                    state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_A.weight"] = torch.zeros_like(
                        state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"], device=target_device
                    )
                    state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.weight"] = torch.zeros_like(
                        state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"], device=target_device
                    )

                    # If the original LoRA had biases (indicated by has_bias)
                    # AND the specific reference bias key exists for this block.

                    ref_key_lora_B_bias = f"transformer.blocks.{i}.attn2.to_k.lora_B.bias"
                    if has_bias and ref_key_lora_B_bias in state_dict:
                        ref_lora_B_bias_tensor = state_dict[ref_key_lora_B_bias]
                        state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.bias"] = torch.zeros_like(
                            ref_lora_B_bias_tensor,
                            device=target_device,
                        )

        return state_dict

    # Copied from diffusers.loaders.lora_pipeline.WanLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
    ):
        """
4326
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
        # convert T2V LoRA to I2V LoRA (when loaded to Wan I2V) by adding zeros for the additional (missing) _img layers
        state_dict = self._maybe_expand_t2v_lora_for_i2v(
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            state_dict=state_dict,
        )
        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
        load_into_transformer_2 = kwargs.pop("load_into_transformer_2", False)
        if load_into_transformer_2:
            if not hasattr(self, "transformer_2"):
                raise AttributeError(
                    f"'{type(self).__name__}' object has no attribute transformer_2"
                    "Note that Wan2.1 models do not have a transformer_2 component."
                    "Ensure the model has a transformer_2 component before setting load_into_transformer_2=True."
                )
            self.load_lora_into_transformer(
                state_dict,
                transformer=self.transformer_2,
                adapter_name=adapter_name,
                metadata=metadata,
                _pipeline=self,
                low_cpu_mem_usage=low_cpu_mem_usage,
                hotswap=hotswap,
            )
        else:
            self.load_lora_into_transformer(
                state_dict,
                transformer=getattr(self, self.transformer_name)
                if not hasattr(self, "transformer")
                else self.transformer,
                adapter_name=adapter_name,
                metadata=metadata,
                _pipeline=self,
                low_cpu_mem_usage=low_cpu_mem_usage,
                hotswap=hotswap,
            )
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->SkyReelsV2Transformer3DModel
    def load_lora_into_transformer(
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
    ):
        """
4396
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
Aryan's avatar
Aryan committed
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
4409
            metadata=metadata,
Aryan's avatar
Aryan committed
4410
4411
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
4412
            hotswap=hotswap,
Aryan's avatar
Aryan committed
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
4425
        transformer_lora_adapter_metadata: Optional[dict] = None,
Aryan's avatar
Aryan committed
4426
4427
    ):
        r"""
4428
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
Aryan's avatar
Aryan committed
4429
        """
4430
4431
        lora_layers = {}
        lora_metadata = {}
Aryan's avatar
Aryan committed
4432

4433
4434
4435
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
4436

4437
4438
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
Aryan's avatar
Aryan committed
4439

4440
        cls._save_lora_weights(
Aryan's avatar
Aryan committed
4441
            save_directory=save_directory,
4442
4443
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
Aryan's avatar
Aryan committed
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
4460
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
Aryan's avatar
Aryan committed
4461
4462
        """
        super().fuse_lora(
4463
4464
4465
4466
4467
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Aryan's avatar
Aryan committed
4468
4469
4470
4471
4472
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
4473
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
Aryan's avatar
Aryan committed
4474
        """
4475
        super().unfuse_lora(components=components, **kwargs)
Aryan's avatar
Aryan committed
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494


class CogView4LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`WanTransformer3DModel`]. Specific to [`CogView4Pipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
4495
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
Aryan's avatar
Aryan committed
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
4508
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Aryan's avatar
Aryan committed
4509
4510
4511
4512
4513
4514

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

4515
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Aryan's avatar
Aryan committed
4516

4517
        state_dict, metadata = _fetch_state_dict(
Aryan's avatar
Aryan committed
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

4538
4539
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
Aryan's avatar
Aryan committed
4540
4541
4542

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
4543
4544
4545
4546
4547
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
Aryan's avatar
Aryan committed
4548
4549
    ):
        """
4550
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
Aryan's avatar
Aryan committed
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
4566
4567
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
Aryan's avatar
Aryan committed
4568
4569
4570
4571
4572
4573
4574
4575
4576

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
4577
            metadata=metadata,
Aryan's avatar
Aryan committed
4578
4579
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
4580
            hotswap=hotswap,
Aryan's avatar
Aryan committed
4581
4582
4583
4584
4585
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->CogView4Transformer2DModel
    def load_lora_into_transformer(
4586
4587
4588
4589
4590
4591
4592
4593
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
Aryan's avatar
Aryan committed
4594
4595
    ):
        """
4596
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
Aryan's avatar
Aryan committed
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
4609
            metadata=metadata,
Aryan's avatar
Aryan committed
4610
4611
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
4612
            hotswap=hotswap,
Aryan's avatar
Aryan committed
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
4625
        transformer_lora_adapter_metadata: Optional[dict] = None,
Aryan's avatar
Aryan committed
4626
4627
    ):
        r"""
4628
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
Aryan's avatar
Aryan committed
4629
        """
4630
4631
        lora_layers = {}
        lora_metadata = {}
Aryan's avatar
Aryan committed
4632

4633
4634
4635
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
4636

4637
4638
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
Aryan's avatar
Aryan committed
4639

4640
        cls._save_lora_weights(
Aryan's avatar
Aryan committed
4641
            save_directory=save_directory,
4642
4643
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
Aryan's avatar
Aryan committed
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
4660
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
Aryan's avatar
Aryan committed
4661
4662
        """
        super().fuse_lora(
4663
4664
4665
4666
4667
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Aryan's avatar
Aryan committed
4668
4669
4670
4671
4672
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
4673
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
Aryan's avatar
Aryan committed
4674
        """
4675
        super().unfuse_lora(components=components, **kwargs)
Aryan's avatar
Aryan committed
4676
4677


4678
4679
4680
4681
4682
class HiDreamImageLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`HiDreamImageTransformer2DModel`]. Specific to [`HiDreamImagePipeline`].
    """

4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
4707
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
4708
4709
4710
4711
4712
4713

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

4714
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
4715

4716
        state_dict, metadata = _fetch_state_dict(
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

4737
4738
4739
4740
        is_non_diffusers_format = any("diffusion_model" in k for k in state_dict)
        if is_non_diffusers_format:
            state_dict = _convert_non_diffusers_hidream_lora_to_diffusers(state_dict)

4741
4742
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
    ):
        """
4753
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
4769
4770
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
4771
4772
4773
4774
4775
4776
4777
4778
4779

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
4780
            metadata=metadata,
4781
4782
4783
4784
4785
4786
4787
4788
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->HiDreamImageTransformer2DModel
    def load_lora_into_transformer(
4789
4790
4791
4792
4793
4794
4795
4796
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
4797
4798
    ):
        """
4799
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
4812
            metadata=metadata,
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
4828
        transformer_lora_adapter_metadata: Optional[dict] = None,
4829
4830
    ):
        r"""
4831
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
4832
        """
4833
4834
        lora_layers = {}
        lora_metadata = {}
4835

4836
4837
4838
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
4839

4840
4841
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
4842

4843
        cls._save_lora_weights(
4844
            save_directory=save_directory,
4845
4846
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
4863
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
4876
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
4877
4878
4879
4880
        """
        super().unfuse_lora(components=components, **kwargs)


4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
class QwenImageLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`QwenImageTransformer2DModel`]. Specific to [`QwenImagePipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
4897
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}

        state_dict, metadata = _fetch_state_dict(
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

4940
        has_alphas_in_sd = any(k.endswith(".alpha") for k in state_dict)
4941
        has_lora_unet = any(k.startswith("lora_unet_") for k in state_dict)
4942
4943
        has_diffusion_model = any(k.startswith("diffusion_model.") for k in state_dict)
        if has_alphas_in_sd or has_lora_unet or has_diffusion_model:
4944
4945
            state_dict = _convert_non_diffusers_qwen_lora_to_diffusers(state_dict)

4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
    ):
        """
4958
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
            metadata=metadata,
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->QwenImageTransformer2DModel
    def load_lora_into_transformer(
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
    ):
        """
5004
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
            metadata=metadata,
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
        transformer_lora_adapter_metadata: Optional[dict] = None,
    ):
        r"""
5036
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
5037
        """
5038
5039
        lora_layers = {}
        lora_metadata = {}
5040

5041
5042
5043
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
5044

5045
5046
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
5047

5048
        cls._save_lora_weights(
5049
            save_directory=save_directory,
5050
5051
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
5068
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
5081
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
5082
5083
5084
5085
        """
        super().unfuse_lora(components=components, **kwargs)


5086
5087
5088
5089
5090
class LoraLoaderMixin(StableDiffusionLoraLoaderMixin):
    def __init__(self, *args, **kwargs):
        deprecation_message = "LoraLoaderMixin is deprecated and this will be removed in a future version. Please use `StableDiffusionLoraLoaderMixin`, instead."
        deprecate("LoraLoaderMixin", "1.0.0", deprecation_message)
        super().__init__(*args, **kwargs)