pipeline_output.py 1.25 KB
Newer Older
Sayak Paul's avatar
Sayak Paul committed
1
2
3
4
5
from dataclasses import dataclass
from typing import List, Union

import numpy as np
import PIL.Image
Aryan's avatar
Aryan committed
6
import torch
Sayak Paul's avatar
Sayak Paul committed
7
8
9
10
11
12
13

from ...utils import BaseOutput


@dataclass
class FluxPipelineOutput(BaseOutput):
    """
14
    Output class for Flux image generation pipelines.
Sayak Paul's avatar
Sayak Paul committed
15
16

    Args:
17
18
19
20
21
        images (`List[PIL.Image.Image]` or `torch.Tensor` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array or torch tensor of shape `(batch_size,
            height, width, num_channels)`. PIL images or numpy array present the denoised images of the diffusion
            pipeline. Torch tensors can represent either the denoised images or the intermediate latents ready to be
            passed to the decoder.
Sayak Paul's avatar
Sayak Paul committed
22
23
24
    """

    images: Union[List[PIL.Image.Image], np.ndarray]
Aryan's avatar
Aryan committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39


@dataclass
class FluxPriorReduxPipelineOutput(BaseOutput):
    """
    Output class for Flux Prior Redux pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
            num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
    """

    prompt_embeds: torch.Tensor
    pooled_prompt_embeds: torch.Tensor