from dataclasses import dataclass from typing import List, Union import numpy as np import PIL.Image import torch from ...utils import BaseOutput @dataclass class FluxPipelineOutput(BaseOutput): """ Output class for Flux image generation pipelines. Args: images (`List[PIL.Image.Image]` or `torch.Tensor` or `np.ndarray`) List of denoised PIL images of length `batch_size` or numpy array or torch tensor of shape `(batch_size, height, width, num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. Torch tensors can represent either the denoised images or the intermediate latents ready to be passed to the decoder. """ images: Union[List[PIL.Image.Image], np.ndarray] @dataclass class FluxPriorReduxPipelineOutput(BaseOutput): """ Output class for Flux Prior Redux pipelines. Args: images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. """ prompt_embeds: torch.Tensor pooled_prompt_embeds: torch.Tensor