pipeline_ddim.py 5.23 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Sid Sahai's avatar
Sid Sahai committed
15
from typing import Optional, Tuple, Union
Pedro Cuenca's avatar
Pedro Cuenca committed
16

Patrick von Platen's avatar
Patrick von Platen committed
17
18
import torch

19
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
20
from ...utils import deprecate
Patrick von Platen's avatar
Patrick von Platen committed
21
22


Patrick von Platen's avatar
Patrick von Platen committed
23
class DDIMPipeline(DiffusionPipeline):
Kashif Rasul's avatar
Kashif Rasul committed
24
25
26
27
28
29
30
31
32
33
34
    r"""
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Parameters:
        unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
            [`DDPMScheduler`], or [`DDIMScheduler`].
    """

35
    def __init__(self, unet, scheduler):
Patrick von Platen's avatar
Patrick von Platen committed
36
        super().__init__()
37
        self.register_modules(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
38

Patrick von Platen's avatar
Patrick von Platen committed
39
    @torch.no_grad()
40
41
    def __call__(
        self,
Sid Sahai's avatar
Sid Sahai committed
42
43
44
45
        batch_size: int = 1,
        generator: Optional[torch.Generator] = None,
        eta: float = 0.0,
        num_inference_steps: int = 50,
46
        use_clipped_model_output: Optional[bool] = None,
Sid Sahai's avatar
Sid Sahai committed
47
        output_type: Optional[str] = "pil",
48
49
50
        return_dict: bool = True,
        **kwargs,
    ) -> Union[ImagePipelineOutput, Tuple]:
Kashif Rasul's avatar
Kashif Rasul committed
51
52
        r"""
        Args:
53
            batch_size (`int`, *optional*, defaults to 1):
Kashif Rasul's avatar
Kashif Rasul committed
54
                The number of images to generate.
55
            generator (`torch.Generator`, *optional*):
Kashif Rasul's avatar
Kashif Rasul committed
56
57
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
58
            eta (`float`, *optional*, defaults to 0.0):
Kashif Rasul's avatar
Kashif Rasul committed
59
                The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM).
60
            num_inference_steps (`int`, *optional*, defaults to 50):
Kashif Rasul's avatar
Kashif Rasul committed
61
62
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
63
64
65
            use_clipped_model_output (`bool`, *optional*, defaults to `None`):
                if `True` or `False`, see documentation for `DDIMScheduler.step`. If `None`, nothing is passed
                downstream to the scheduler. So use `None` for schedulers which don't support this argument.
66
            output_type (`str`, *optional*, defaults to `"pil"`):
Kashif Rasul's avatar
Kashif Rasul committed
67
                The output format of the generate image. Choose between
68
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
69
            return_dict (`bool`, *optional*, defaults to `True`):
Kashif Rasul's avatar
Kashif Rasul committed
70
                Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
71
72
73
74
75

        Returns:
            [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
            `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
            generated images.
Kashif Rasul's avatar
Kashif Rasul committed
76
        """
Pedro Cuenca's avatar
Pedro Cuenca committed
77

78
79
80
81
82
83
84
85
86
87
88
89
90
        if generator is not None and generator.device.type != self.device.type and self.device.type != "mps":
            message = (
                f"The `generator` device is `{generator.device}` and does not match the pipeline "
                f"device `{self.device}`, so the `generator` will be set to `None`. "
                f'Please use `generator=torch.Generator(device="{self.device}")` instead.'
            )
            deprecate(
                "generator.device == 'cpu'",
                "0.11.0",
                message,
            )
            generator = None

Patrick von Platen's avatar
Patrick von Platen committed
91
        # Sample gaussian noise to begin loop
Patrick von Platen's avatar
Patrick von Platen committed
92
        image = torch.randn(
Patrick von Platen's avatar
Patrick von Platen committed
93
            (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
Patrick von Platen's avatar
Patrick von Platen committed
94
            generator=generator,
95
            device=self.device,
Patrick von Platen's avatar
Patrick von Platen committed
96
97
        )

98
99
        # set step values
        self.scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
100

hysts's avatar
hysts committed
101
        for t in self.progress_bar(self.scheduler.timesteps):
Patrick von Platen's avatar
Patrick von Platen committed
102
            # 1. predict noise model_output
103
            model_output = self.unet(image, t).sample
Patrick von Platen's avatar
Patrick von Platen committed
104

105
            # 2. predict previous mean of image x_t-1 and add variance depending on eta
106
            # eta corresponds to η in paper and should be between [0, 1]
107
            # do x_t -> x_t-1
108
109
110
            image = self.scheduler.step(
                model_output, t, image, eta=eta, use_clipped_model_output=use_clipped_model_output, generator=generator
            ).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
111

112
113
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
anton-l's avatar
anton-l committed
114
115
        if output_type == "pil":
            image = self.numpy_to_pil(image)
116

117
118
119
120
        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)