scheduling_heun_discrete.py 18.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
YiYi Xu's avatar
YiYi Xu committed
16
from collections import defaultdict
17
from typing import List, Optional, Tuple, Union
18
19
20
21
22

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
Kashif Rasul's avatar
Kashif Rasul committed
23
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
24
25


26
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
27
28
29
30
31
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
32
33
34
35
36
37
38
39
40
41
42
43
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
44
45
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
46
47
48
49

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
50
    if alpha_transform_type == "cosine":
51

YiYi Xu's avatar
YiYi Xu committed
52
53
54
55
56
57
58
59
60
61
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
        raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
62
63
64
65
66

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
67
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
68
69
70
    return torch.tensor(betas, dtype=torch.float32)


71
72
class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
    """
73
    Scheduler with Heun steps for discrete beta schedules.
74

75
76
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
77
78

    Args:
79
80
81
82
83
84
85
86
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
87
            `linear` or `scaled_linear`.
88
89
90
91
92
93
94
95
96
97
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        clip_sample (`bool`, defaults to `True`):
            Clip the predicted sample for numerical stability.
        clip_sample_range (`float`, defaults to 1.0):
            The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
98
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
99
100
101
102
103
104
105
106
107
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
            An offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
            Diffusion.
108
109
    """

Kashif Rasul's avatar
Kashif Rasul committed
110
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
111
112
113
114
115
116
117
118
119
    order = 2

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.00085,  # sensible defaults
        beta_end: float = 0.012,
        beta_schedule: str = "linear",
120
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
121
        prediction_type: str = "epsilon",
122
        use_karras_sigmas: Optional[bool] = False,
YiYi Xu's avatar
YiYi Xu committed
123
124
        clip_sample: Optional[bool] = False,
        clip_sample_range: float = 1.0,
125
126
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
127
128
    ):
        if trained_betas is not None:
129
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
130
131
132
133
134
135
136
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
137
138
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
YiYi Xu's avatar
YiYi Xu committed
139
140
141
            self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="cosine")
        elif beta_schedule == "exp":
            self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="exp")
142
143
144
145
146
147
148
149
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

        #  set all values
        self.set_timesteps(num_train_timesteps, None, num_train_timesteps)
150
        self.use_karras_sigmas = use_karras_sigmas
151

152
153
154
155
156
157
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps

        indices = (schedule_timesteps == timestep).nonzero()

YiYi Xu's avatar
YiYi Xu committed
158
159
160
161
162
163
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        if len(self._index_counter) == 0:
            pos = 1 if len(indices) > 1 else 0
164
        else:
YiYi Xu's avatar
YiYi Xu committed
165
166
167
            timestep_int = timestep.cpu().item() if torch.is_tensor(timestep) else timestep
            pos = self._index_counter[timestep_int]

168
169
        return indices[pos].item()

170
171
172
173
174
175
176
177
    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
        if self.config.timestep_spacing in ["linspace", "trailing"]:
            return self.sigmas.max()

        return (self.sigmas.max() ** 2 + 1) ** 0.5

178
179
180
181
182
183
184
185
    def scale_model_input(
        self,
        sample: torch.FloatTensor,
        timestep: Union[float, torch.FloatTensor],
    ) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.
186
187
188
189
190
191
192

        Args:
            sample (`torch.FloatTensor`):
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.

193
        Returns:
194
195
            `torch.FloatTensor`:
                A scaled input sample.
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        """
        step_index = self.index_for_timestep(timestep)

        sigma = self.sigmas[step_index]
        sample = sample / ((sigma**2 + 1) ** 0.5)
        return sample

    def set_timesteps(
        self,
        num_inference_steps: int,
        device: Union[str, torch.device] = None,
        num_train_timesteps: Optional[int] = None,
    ):
        """
210
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
211
212
213

        Args:
            num_inference_steps (`int`):
214
215
216
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
217
218
219
220
221
        """
        self.num_inference_steps = num_inference_steps

        num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy()
        elif self.config.timestep_spacing == "leading":
            step_ratio = num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(float)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(num_train_timesteps, 0, -step_ratio)).round().copy().astype(float)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
241
242

        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
243
        log_sigmas = np.log(sigmas)
244
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
245

YiYi Xu's avatar
YiYi Xu committed
246
        if self.config.use_karras_sigmas:
247
248
249
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

250
251
252
253
254
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
        sigmas = torch.from_numpy(sigmas).to(device=device)
        self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]])

        timesteps = torch.from_numpy(timesteps)
255
        timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)])
256
257
258
259
260
261
262
263
264
265
266

        if str(device).startswith("mps"):
            # mps does not support float64
            self.timesteps = timesteps.to(device, dtype=torch.float32)
        else:
            self.timesteps = timesteps.to(device=device)

        # empty dt and derivative
        self.prev_derivative = None
        self.dt = None

YiYi Xu's avatar
YiYi Xu committed
267
268
269
270
        # for exp beta schedules, such as the one for `pipeline_shap_e.py`
        # we need an index counter
        self._index_counter = defaultdict(int)

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
        log_sigma = np.log(sigma)

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
    def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
        """Constructs the noise schedule of Karras et al. (2022)."""

        sigma_min: float = in_sigmas[-1].item()
        sigma_max: float = in_sigmas[0].item()

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

309
310
311
312
313
314
315
316
317
318
319
320
    @property
    def state_in_first_order(self):
        return self.dt is None

    def step(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        timestep: Union[float, torch.FloatTensor],
        sample: Union[torch.FloatTensor, np.ndarray],
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
321
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
322
        process from the learned model outputs (most often the predicted noise).
323
324
325
326
327
328
329
330
331
332
333

        Args:
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple.

334
335
        Returns:
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
336
337
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
338
339
340
        """
        step_index = self.index_for_timestep(timestep)

YiYi Xu's avatar
YiYi Xu committed
341
342
343
344
        # advance index counter by 1
        timestep_int = timestep.cpu().item() if torch.is_tensor(timestep) else timestep
        self._index_counter[timestep_int] += 1

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
        if self.state_in_first_order:
            sigma = self.sigmas[step_index]
            sigma_next = self.sigmas[step_index + 1]
        else:
            # 2nd order / Heun's method
            sigma = self.sigmas[step_index - 1]
            sigma_next = self.sigmas[step_index]

        # currently only gamma=0 is supported. This usually works best anyways.
        # We can support gamma in the future but then need to scale the timestep before
        # passing it to the model which requires a change in API
        gamma = 0
        sigma_hat = sigma * (gamma + 1)  # Note: sigma_hat == sigma for now

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
360
        if self.config.prediction_type == "epsilon":
Suraj Patil's avatar
Suraj Patil committed
361
362
            sigma_input = sigma_hat if self.state_in_first_order else sigma_next
            pred_original_sample = sample - sigma_input * model_output
363
        elif self.config.prediction_type == "v_prediction":
Suraj Patil's avatar
Suraj Patil committed
364
365
366
367
            sigma_input = sigma_hat if self.state_in_first_order else sigma_next
            pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
                sample / (sigma_input**2 + 1)
            )
368
        elif self.config.prediction_type == "sample":
YiYi Xu's avatar
YiYi Xu committed
369
            pred_original_sample = model_output
370
371
372
373
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )
374

YiYi Xu's avatar
YiYi Xu committed
375
376
377
378
379
        if self.config.clip_sample:
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
            )

380
        if self.state_in_first_order:
381
            # 2. Convert to an ODE derivative for 1st order
382
            derivative = (sample - pred_original_sample) / sigma_hat
383
            # 3. delta timestep
384
385
386
387
388
389
390
391
            dt = sigma_next - sigma_hat

            # store for 2nd order step
            self.prev_derivative = derivative
            self.dt = dt
            self.sample = sample
        else:
            # 2. 2nd order / Heun's method
Suraj Patil's avatar
Suraj Patil committed
392
            derivative = (sample - pred_original_sample) / sigma_next
393
394
            derivative = (self.prev_derivative + derivative) / 2

395
            # 3. take prev timestep & sample
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
            dt = self.dt
            sample = self.sample

            # free dt and derivative
            # Note, this puts the scheduler in "first order mode"
            self.prev_derivative = None
            self.dt = None
            self.sample = None

        prev_sample = sample + derivative * dt

        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.FloatTensor,
    ) -> torch.FloatTensor:
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
419
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
420
421
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
422
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
423
424
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
425
            schedule_timesteps = self.timesteps.to(original_samples.device)
426
427
            timesteps = timesteps.to(original_samples.device)

428
        step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
429

430
        sigma = sigmas[step_indices].flatten()
431
432
433
434
435
436
437
438
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps