test_animatediff.py 22.7 KB
Newer Older
Dhruv Nair's avatar
Dhruv Nair committed
1
2
3
4
5
6
7
8
9
10
11
12
import gc
import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

import diffusers
from diffusers import (
    AnimateDiffPipeline,
    AutoencoderKL,
    DDIMScheduler,
13
14
    DPMSolverMultistepScheduler,
    LCMScheduler,
Dhruv Nair's avatar
Dhruv Nair committed
15
    MotionAdapter,
16
    StableDiffusionPipeline,
Dhruv Nair's avatar
Dhruv Nair committed
17
18
19
    UNet2DConditionModel,
    UNetMotionModel,
)
Aryan's avatar
Aryan committed
20
from diffusers.models.attention import FreeNoiseTransformerBlock
21
from diffusers.utils import is_xformers_available, logging
22
23
24
25
26
27
28
from diffusers.utils.testing_utils import (
    numpy_cosine_similarity_distance,
    require_accelerator,
    require_torch_gpu,
    slow,
    torch_device,
)
Dhruv Nair's avatar
Dhruv Nair committed
29
30

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
31
32
33
34
35
36
from ..test_pipelines_common import (
    IPAdapterTesterMixin,
    PipelineFromPipeTesterMixin,
    PipelineTesterMixin,
    SDFunctionTesterMixin,
)
Dhruv Nair's avatar
Dhruv Nair committed
37
38
39
40
41
42
43
44
45


def to_np(tensor):
    if isinstance(tensor, torch.Tensor):
        tensor = tensor.detach().cpu().numpy()

    return tensor


46
class AnimateDiffPipelineFastTests(
47
    IPAdapterTesterMixin, SDFunctionTesterMixin, PipelineTesterMixin, PipelineFromPipeTesterMixin, unittest.TestCase
48
):
Dhruv Nair's avatar
Dhruv Nair committed
49
50
51
52
53
54
55
56
57
    pipeline_class = AnimateDiffPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    required_optional_params = frozenset(
        [
            "num_inference_steps",
            "generator",
            "latents",
            "return_dict",
Aryan V S's avatar
Aryan V S committed
58
59
            "callback_on_step_end",
            "callback_on_step_end_tensor_inputs",
Dhruv Nair's avatar
Dhruv Nair committed
60
61
62
63
        ]
    )

    def get_dummy_components(self):
64
65
66
        cross_attention_dim = 8
        block_out_channels = (8, 8)

Dhruv Nair's avatar
Dhruv Nair committed
67
68
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
69
            block_out_channels=block_out_channels,
Dhruv Nair's avatar
Dhruv Nair committed
70
            layers_per_block=2,
71
            sample_size=8,
Dhruv Nair's avatar
Dhruv Nair committed
72
73
74
75
            in_channels=4,
            out_channels=4,
            down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
76
            cross_attention_dim=cross_attention_dim,
Dhruv Nair's avatar
Dhruv Nair committed
77
78
79
80
81
82
83
84
85
86
            norm_num_groups=2,
        )
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="linear",
            clip_sample=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
87
            block_out_channels=block_out_channels,
Dhruv Nair's avatar
Dhruv Nair committed
88
89
90
91
92
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
93
            norm_num_groups=2,
Dhruv Nair's avatar
Dhruv Nair committed
94
95
96
97
98
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
99
            hidden_size=cross_attention_dim,
Dhruv Nair's avatar
Dhruv Nair committed
100
101
102
103
104
105
106
107
108
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
109
        torch.manual_seed(0)
Dhruv Nair's avatar
Dhruv Nair committed
110
        motion_adapter = MotionAdapter(
111
            block_out_channels=block_out_channels,
Dhruv Nair's avatar
Dhruv Nair committed
112
113
114
115
116
117
118
119
120
121
122
123
            motion_layers_per_block=2,
            motion_norm_num_groups=2,
            motion_num_attention_heads=4,
        )

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "motion_adapter": motion_adapter,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
124
125
            "feature_extractor": None,
            "image_encoder": None,
Dhruv Nair's avatar
Dhruv Nair committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 7.5,
            "output_type": "pt",
        }
        return inputs

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    def test_from_pipe_consistent_config(self):
        assert self.original_pipeline_class == StableDiffusionPipeline
        original_repo = "hf-internal-testing/tinier-stable-diffusion-pipe"
        original_kwargs = {"requires_safety_checker": False}

        # create original_pipeline_class(sd)
        pipe_original = self.original_pipeline_class.from_pretrained(original_repo, **original_kwargs)

        # original_pipeline_class(sd) -> pipeline_class
        pipe_components = self.get_dummy_components()
        pipe_additional_components = {}
        for name, component in pipe_components.items():
            if name not in pipe_original.components:
                pipe_additional_components[name] = component

        pipe = self.pipeline_class.from_pipe(pipe_original, **pipe_additional_components)

        # pipeline_class -> original_pipeline_class(sd)
        original_pipe_additional_components = {}
        for name, component in pipe_original.components.items():
            if name not in pipe.components or not isinstance(component, pipe.components[name].__class__):
                original_pipe_additional_components[name] = component

        pipe_original_2 = self.original_pipeline_class.from_pipe(pipe, **original_pipe_additional_components)

        # compare the config
        original_config = {k: v for k, v in pipe_original.config.items() if not k.startswith("_")}
        original_config_2 = {k: v for k, v in pipe_original_2.config.items() if not k.startswith("_")}
        assert original_config_2 == original_config

Dhruv Nair's avatar
Dhruv Nair committed
174
175
176
177
178
179
180
181
182
183
    def test_motion_unet_loading(self):
        components = self.get_dummy_components()
        pipe = AnimateDiffPipeline(**components)

        assert isinstance(pipe.unet, UNetMotionModel)

    @unittest.skip("Attention slicing is not enabled in this pipeline")
    def test_attention_slicing_forward_pass(self):
        pass

184
    def test_ip_adapter(self):
185
186
187
188
        expected_pipe_slice = None
        if torch_device == "cpu":
            expected_pipe_slice = np.array(
                [
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
                    0.5216,
                    0.5620,
                    0.4927,
                    0.5082,
                    0.4786,
                    0.5932,
                    0.5125,
                    0.4514,
                    0.5315,
                    0.4694,
                    0.3276,
                    0.4863,
                    0.3920,
                    0.3684,
                    0.5745,
                    0.4499,
                    0.5081,
                    0.5414,
                    0.6014,
                    0.5062,
                    0.3630,
                    0.5296,
                    0.6018,
                    0.5098,
                    0.4948,
                    0.5101,
                    0.5620,
216
217
                ]
            )
218
        return super().test_ip_adapter(expected_pipe_slice=expected_pipe_slice)
219

220
221
222
    def test_dict_tuple_outputs_equivalent(self):
        expected_slice = None
        if torch_device == "cpu":
223
            expected_slice = np.array([0.5125, 0.4514, 0.5315, 0.4499, 0.5081, 0.5414, 0.4948, 0.5101, 0.5620])
224
225
        return super().test_dict_tuple_outputs_equivalent(expected_slice=expected_slice)

Dhruv Nair's avatar
Dhruv Nair committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
    def test_inference_batch_single_identical(
        self,
        batch_size=2,
        expected_max_diff=1e-4,
        additional_params_copy_to_batched_inputs=["num_inference_steps"],
    ):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for components in pipe.components.values():
            if hasattr(components, "set_default_attn_processor"):
                components.set_default_attn_processor()

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs(torch_device)
        # Reset generator in case it is has been used in self.get_dummy_inputs
        inputs["generator"] = self.get_generator(0)

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
        batched_inputs = {}
        batched_inputs.update(inputs)

        for name in self.batch_params:
            if name not in inputs:
                continue

            value = inputs[name]
            if name == "prompt":
                len_prompt = len(value)
                batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
                batched_inputs[name][-1] = 100 * "very long"

            else:
                batched_inputs[name] = batch_size * [value]

        if "generator" in inputs:
            batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)]

        if "batch_size" in inputs:
            batched_inputs["batch_size"] = batch_size

        for arg in additional_params_copy_to_batched_inputs:
            batched_inputs[arg] = inputs[arg]

        output = pipe(**inputs)
        output_batch = pipe(**batched_inputs)

        assert output_batch[0].shape[0] == batch_size

        max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max()
        assert max_diff < expected_max_diff

281
    @require_accelerator
Dhruv Nair's avatar
Dhruv Nair committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    def test_to_device(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        pipe.to("cpu")
        # pipeline creates a new motion UNet under the hood. So we need to check the device from pipe.components
        model_devices = [
            component.device.type for component in pipe.components.values() if hasattr(component, "device")
        ]
        self.assertTrue(all(device == "cpu" for device in model_devices))

        output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0]
        self.assertTrue(np.isnan(output_cpu).sum() == 0)

297
        pipe.to(torch_device)
Dhruv Nair's avatar
Dhruv Nair committed
298
299
300
        model_devices = [
            component.device.type for component in pipe.components.values() if hasattr(component, "device")
        ]
301
        self.assertTrue(all(device == torch_device for device in model_devices))
Dhruv Nair's avatar
Dhruv Nair committed
302

303
304
        output_device = pipe(**self.get_dummy_inputs(torch_device))[0]
        self.assertTrue(np.isnan(to_np(output_device)).sum() == 0)
Dhruv Nair's avatar
Dhruv Nair committed
305
306
307
308
309
310
311
312
313
314

    def test_to_dtype(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        # pipeline creates a new motion UNet under the hood. So we need to check the dtype from pipe.components
        model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes))

315
        pipe.to(dtype=torch.float16)
Dhruv Nair's avatar
Dhruv Nair committed
316
317
318
        model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes))

319
320
321
322
323
324
325
326
    def test_prompt_embeds(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)
        pipe.to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        inputs.pop("prompt")
327
        inputs["prompt_embeds"] = torch.randn((1, 4, pipe.text_encoder.config.hidden_size), device=torch_device)
328
329
        pipe(**inputs)

Aryan V S's avatar
Aryan V S committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
    def test_free_init(self):
        components = self.get_dummy_components()
        pipe: AnimateDiffPipeline = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)
        pipe.to(torch_device)

        inputs_normal = self.get_dummy_inputs(torch_device)
        frames_normal = pipe(**inputs_normal).frames[0]

        pipe.enable_free_init(
            num_iters=2,
            use_fast_sampling=True,
            method="butterworth",
            order=4,
            spatial_stop_frequency=0.25,
            temporal_stop_frequency=0.25,
        )
        inputs_enable_free_init = self.get_dummy_inputs(torch_device)
        frames_enable_free_init = pipe(**inputs_enable_free_init).frames[0]

        pipe.disable_free_init()
        inputs_disable_free_init = self.get_dummy_inputs(torch_device)
        frames_disable_free_init = pipe(**inputs_disable_free_init).frames[0]

        sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_init)).sum()
        max_diff_disabled = np.abs(to_np(frames_normal) - to_np(frames_disable_free_init)).max()
        self.assertGreater(
357
            sum_enabled, 1e1, "Enabling of FreeInit should lead to results different from the default pipeline results"
Aryan V S's avatar
Aryan V S committed
358
359
360
361
362
363
364
        )
        self.assertLess(
            max_diff_disabled,
            1e-4,
            "Disabling of FreeInit should lead to results similar to the default pipeline results",
        )

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
    def test_free_init_with_schedulers(self):
        components = self.get_dummy_components()
        pipe: AnimateDiffPipeline = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)
        pipe.to(torch_device)

        inputs_normal = self.get_dummy_inputs(torch_device)
        frames_normal = pipe(**inputs_normal).frames[0]

        schedulers_to_test = [
            DPMSolverMultistepScheduler.from_config(
                components["scheduler"].config,
                timestep_spacing="linspace",
                beta_schedule="linear",
                algorithm_type="dpmsolver++",
                steps_offset=1,
                clip_sample=False,
            ),
            LCMScheduler.from_config(
                components["scheduler"].config,
                timestep_spacing="linspace",
                beta_schedule="linear",
                steps_offset=1,
                clip_sample=False,
            ),
        ]
        components.pop("scheduler")

        for scheduler in schedulers_to_test:
            components["scheduler"] = scheduler
            pipe: AnimateDiffPipeline = self.pipeline_class(**components)
            pipe.set_progress_bar_config(disable=None)
            pipe.to(torch_device)

            pipe.enable_free_init(num_iters=2, use_fast_sampling=False)

            inputs = self.get_dummy_inputs(torch_device)
            frames_enable_free_init = pipe(**inputs).frames[0]
            sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_init)).sum()

            self.assertGreater(
                sum_enabled,
                1e1,
                "Enabling of FreeInit should lead to results different from the default pipeline results",
            )

Aryan's avatar
Aryan committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
    def test_free_noise_blocks(self):
        components = self.get_dummy_components()
        pipe: AnimateDiffPipeline = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)
        pipe.to(torch_device)

        pipe.enable_free_noise()
        for block in pipe.unet.down_blocks:
            for motion_module in block.motion_modules:
                for transformer_block in motion_module.transformer_blocks:
                    self.assertTrue(
                        isinstance(transformer_block, FreeNoiseTransformerBlock),
                        "Motion module transformer blocks must be an instance of `FreeNoiseTransformerBlock` after enabling FreeNoise.",
                    )

        pipe.disable_free_noise()
        for block in pipe.unet.down_blocks:
            for motion_module in block.motion_modules:
                for transformer_block in motion_module.transformer_blocks:
                    self.assertFalse(
                        isinstance(transformer_block, FreeNoiseTransformerBlock),
                        "Motion module transformer blocks must not be an instance of `FreeNoiseTransformerBlock` after disabling FreeNoise.",
                    )

    def test_free_noise(self):
        components = self.get_dummy_components()
        pipe: AnimateDiffPipeline = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)
        pipe.to(torch_device)

        inputs_normal = self.get_dummy_inputs(torch_device)
        frames_normal = pipe(**inputs_normal).frames[0]

        for context_length in [8, 9]:
            for context_stride in [4, 6]:
                pipe.enable_free_noise(context_length, context_stride)

                inputs_enable_free_noise = self.get_dummy_inputs(torch_device)
                frames_enable_free_noise = pipe(**inputs_enable_free_noise).frames[0]

                pipe.disable_free_noise()

                inputs_disable_free_noise = self.get_dummy_inputs(torch_device)
                frames_disable_free_noise = pipe(**inputs_disable_free_noise).frames[0]

                sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_noise)).sum()
                max_diff_disabled = np.abs(to_np(frames_normal) - to_np(frames_disable_free_noise)).max()
                self.assertGreater(
                    sum_enabled,
                    1e1,
                    "Enabling of FreeNoise should lead to results different from the default pipeline results",
                )
                self.assertLess(
                    max_diff_disabled,
                    1e-4,
                    "Disabling of FreeNoise should lead to results similar to the default pipeline results",
                )

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
    def test_free_noise_split_inference(self):
        components = self.get_dummy_components()
        pipe: AnimateDiffPipeline = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)
        pipe.to(torch_device)

        pipe.enable_free_noise(8, 4)

        inputs_normal = self.get_dummy_inputs(torch_device)
        frames_normal = pipe(**inputs_normal).frames[0]

        # Test FreeNoise with split inference memory-optimization
        pipe.enable_free_noise_split_inference(spatial_split_size=16, temporal_split_size=4)

        inputs_enable_split_inference = self.get_dummy_inputs(torch_device)
        frames_enable_split_inference = pipe(**inputs_enable_split_inference).frames[0]

        sum_split_inference = np.abs(to_np(frames_normal) - to_np(frames_enable_split_inference)).sum()
        self.assertLess(
            sum_split_inference,
            1e-4,
            "Enabling FreeNoise Split Inference memory-optimizations should lead to results similar to the default pipeline results",
        )

Aryan's avatar
Aryan committed
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
    def test_free_noise_multi_prompt(self):
        components = self.get_dummy_components()
        pipe: AnimateDiffPipeline = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)
        pipe.to(torch_device)

        context_length = 8
        context_stride = 4
        pipe.enable_free_noise(context_length, context_stride)

        # Make sure that pipeline works when prompt indices are within num_frames bounds
        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt"] = {0: "Caterpillar on a leaf", 10: "Butterfly on a leaf"}
        inputs["num_frames"] = 16
        pipe(**inputs).frames[0]

        with self.assertRaises(ValueError):
            # Ensure that prompt indices are within bounds
            inputs = self.get_dummy_inputs(torch_device)
            inputs["num_frames"] = 16
            inputs["prompt"] = {0: "Caterpillar on a leaf", 10: "Butterfly on a leaf", 42: "Error on a leaf"}
            pipe(**inputs).frames[0]

516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_without_offload = pipe(**inputs).frames[0]
        output_without_offload = (
            output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload
        )

        pipe.enable_xformers_memory_efficient_attention()
        inputs = self.get_dummy_inputs(torch_device)
        output_with_offload = pipe(**inputs).frames[0]
        output_with_offload = (
            output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload
        )

        max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
        self.assertLess(max_diff, 1e-4, "XFormers attention should not affect the inference results")

545
546
547
    def test_vae_slicing(self):
        return super().test_vae_slicing(image_count=2)

Dhruv Nair's avatar
Dhruv Nair committed
548
549
550
551

@slow
@require_torch_gpu
class AnimateDiffPipelineSlowTests(unittest.TestCase):
552
553
554
555
556
557
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

Dhruv Nair's avatar
Dhruv Nair committed
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_animatediff(self):
        adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
        pipe = AnimateDiffPipeline.from_pretrained("frankjoshua/toonyou_beta6", motion_adapter=adapter)
        pipe = pipe.to(torch_device)
        pipe.scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="linear",
            steps_offset=1,
            clip_sample=False,
        )
        pipe.enable_vae_slicing()
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        prompt = "night, b&w photo of old house, post apocalypse, forest, storm weather, wind, rocks, 8k uhd, dslr, soft lighting, high quality, film grain"
        negative_prompt = "bad quality, worse quality"

        generator = torch.Generator("cpu").manual_seed(0)
        output = pipe(
            prompt,
            negative_prompt=negative_prompt,
            num_frames=16,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=3,
            output_type="np",
        )

        image = output.frames[0]
        assert image.shape == (16, 512, 512, 3)

        image_slice = image[0, -3:, -3:, -1]
        expected_slice = np.array(
            [
                0.11357737,
                0.11285847,
                0.11180121,
                0.11084166,
                0.11414117,
                0.09785956,
                0.10742754,
                0.10510018,
                0.08045256,
            ]
        )
        assert numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice.flatten()) < 1e-3