test_pipelines_common.py 32.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import contextlib
import gc
import inspect
import io
import re
import tempfile
import unittest
from typing import Callable, Union

import numpy as np
11
import PIL
12
13
import torch

14
import diffusers
15
from diffusers import DiffusionPipeline
16
from diffusers.image_processor import VaeImageProcessor
17
from diffusers.schedulers import KarrasDiffusionSchedulers
18
from diffusers.utils import logging
19
from diffusers.utils.import_utils import is_accelerate_available, is_accelerate_version, is_xformers_available
20
from diffusers.utils.testing_utils import CaptureLogger, require_torch, torch_device
21
22


23
24
25
26
27
28
29
def to_np(tensor):
    if isinstance(tensor, torch.Tensor):
        tensor = tensor.detach().cpu().numpy()

    return tensor


30
31
32
33
34
def check_same_shape(tensor_list):
    shapes = [tensor.shape for tensor in tensor_list]
    return all(shape == shapes[0] for shape in shapes[1:])


35
36
37
38
39
40
41
42
43
44
45
46
47
48
class PipelineLatentTesterMixin:
    """
    This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes.
    It provides a set of common tests for PyTorch pipeline that has vae, e.g.
    equivalence of different input and output types, etc.
    """

    @property
    def image_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `image_params` in the child test class. "
            "`image_params` are tested for if all accepted input image types (i.e. `pt`,`pil`,`np`) are producing same results"
        )

49
50
51
52
53
54
55
    @property
    def image_latents_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `image_latents_params` in the child test class. "
            "`image_latents_params` are tested for if passing latents directly are producing same results"
        )

56
57
58
    def get_dummy_inputs_by_type(self, device, seed=0, input_image_type="pt", output_type="np"):
        inputs = self.get_dummy_inputs(device, seed)

59
60
61
62
63
64
65
66
67
68
69
70
        def convert_to_pt(image):
            if isinstance(image, torch.Tensor):
                input_image = image
            elif isinstance(image, np.ndarray):
                input_image = VaeImageProcessor.numpy_to_pt(image)
            elif isinstance(image, PIL.Image.Image):
                input_image = VaeImageProcessor.pil_to_numpy(image)
                input_image = VaeImageProcessor.numpy_to_pt(input_image)
            else:
                raise ValueError(f"unsupported input_image_type {type(image)}")
            return input_image

71
72
73
74
75
76
77
78
79
80
81
82
83
84
        def convert_pt_to_type(image, input_image_type):
            if input_image_type == "pt":
                input_image = image
            elif input_image_type == "np":
                input_image = VaeImageProcessor.pt_to_numpy(image)
            elif input_image_type == "pil":
                input_image = VaeImageProcessor.pt_to_numpy(image)
                input_image = VaeImageProcessor.numpy_to_pil(input_image)
            else:
                raise ValueError(f"unsupported input_image_type {input_image_type}.")
            return input_image

        for image_param in self.image_params:
            if image_param in inputs.keys():
85
86
87
                inputs[image_param] = convert_pt_to_type(
                    convert_to_pt(inputs[image_param]).to(device), input_image_type
                )
88
89
90
91
92

        inputs["output_type"] = output_type

        return inputs

93
    def test_pt_np_pil_outputs_equivalent(self, expected_max_diff=1e-4):
94
95
96
        self._test_pt_np_pil_outputs_equivalent(expected_max_diff=expected_max_diff)

    def _test_pt_np_pil_outputs_equivalent(self, expected_max_diff=1e-4, input_image_type="pt"):
97
98
99
100
101
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

102
103
104
105
106
107
108
109
110
        output_pt = pipe(
            **self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="pt")
        )[0]
        output_np = pipe(
            **self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="np")
        )[0]
        output_pil = pipe(
            **self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="pil")
        )[0]
111
112

        max_diff = np.abs(output_pt.cpu().numpy().transpose(0, 2, 3, 1) - output_np).max()
113
114
115
        self.assertLess(
            max_diff, expected_max_diff, "`output_type=='pt'` generate different results from `output_type=='np'`"
        )
116
117

        max_diff = np.abs(np.array(output_pil[0]) - (output_np * 255).round()).max()
118
        self.assertLess(max_diff, 2.0, "`output_type=='pil'` generate different results from `output_type=='np'`")
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

    def test_pt_np_pil_inputs_equivalent(self):
        if len(self.image_params) == 0:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        out_input_pt = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0]
        out_input_np = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0]
        out_input_pil = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pil"))[0]

        max_diff = np.abs(out_input_pt - out_input_np).max()
        self.assertLess(max_diff, 1e-4, "`input_type=='pt'` generate different result from `input_type=='np'`")
        max_diff = np.abs(out_input_pil - out_input_np).max()
        self.assertLess(max_diff, 1e-2, "`input_type=='pt'` generate different result from `input_type=='np'`")

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    def test_latents_input(self):
        if len(self.image_latents_params) == 0:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.image_processor = VaeImageProcessor(do_resize=False, do_normalize=False)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        out = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0]

        vae = components["vae"]
        inputs = self.get_dummy_inputs_by_type(torch_device, input_image_type="pt")
        generator = inputs["generator"]
        for image_param in self.image_latents_params:
            if image_param in inputs.keys():
                inputs[image_param] = (
                    vae.encode(inputs[image_param]).latent_dist.sample(generator) * vae.config.scaling_factor
                )
        out_latents_inputs = pipe(**inputs)[0]

        max_diff = np.abs(out - out_latents_inputs).max()
        self.assertLess(max_diff, 1e-4, "passing latents as image input generate different result from passing image")

163

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
@require_torch
class PipelineKarrasSchedulerTesterMixin:
    """
    This mixin is designed to be used with unittest.TestCase classes.
    It provides a set of common tests for each PyTorch pipeline that makes use of KarrasDiffusionSchedulers
    equivalence of dict and tuple outputs, etc.
    """

    def test_karras_schedulers_shape(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)

        # make sure that PNDM does not need warm-up
        pipe.scheduler.register_to_config(skip_prk_steps=True)

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = 2

        if "strength" in inputs:
            inputs["num_inference_steps"] = 4
            inputs["strength"] = 0.5

        outputs = []
        for scheduler_enum in KarrasDiffusionSchedulers:
            if "KDPM2" in scheduler_enum.name:
                inputs["num_inference_steps"] = 5

            scheduler_cls = getattr(diffusers, scheduler_enum.name)
            pipe.scheduler = scheduler_cls.from_config(pipe.scheduler.config)
            output = pipe(**inputs)[0]
            outputs.append(output)

            if "KDPM2" in scheduler_enum.name:
                inputs["num_inference_steps"] = 2

        assert check_same_shape(outputs)


204
205
206
207
208
209
210
211
@require_torch
class PipelineTesterMixin:
    """
    This mixin is designed to be used with unittest.TestCase classes.
    It provides a set of common tests for each PyTorch pipeline, e.g. saving and loading the pipeline,
    equivalence of dict and tuple outputs, etc.
    """

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    # Canonical parameters that are passed to `__call__` regardless
    # of the type of pipeline. They are always optional and have common
    # sense default values.
    required_optional_params = frozenset(
        [
            "num_inference_steps",
            "num_images_per_prompt",
            "generator",
            "latents",
            "output_type",
            "return_dict",
            "callback",
            "callback_steps",
        ]
    )
227

228
229
230
231
232
    # set these parameters to False in the child class if the pipeline does not support the corresponding functionality
    test_attention_slicing = True
    test_cpu_offload = True
    test_xformers_attention = True

233
234
235
236
237
    def get_generator(self, seed):
        device = torch_device if torch_device != "mps" else "cpu"
        generator = torch.Generator(device).manual_seed(seed)
        return generator

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    @property
    def pipeline_class(self) -> Union[Callable, DiffusionPipeline]:
        raise NotImplementedError(
            "You need to set the attribute `pipeline_class = ClassNameOfPipeline` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def get_dummy_components(self):
        raise NotImplementedError(
            "You need to implement `get_dummy_components(self)` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def get_dummy_inputs(self, device, seed=0):
        raise NotImplementedError(
            "You need to implement `get_dummy_inputs(self, device, seed)` in the child test class. "
            "See existing pipeline tests for reference."
        )

257
258
259
260
261
    @property
    def params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `params` in the child test class. "
            "`params` are checked for if all values are present in `__call__`'s signature."
262
            " You can set `params` using one of the common set of parameters defined in `pipeline_params.py`"
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
            " e.g., `TEXT_TO_IMAGE_PARAMS` defines the common parameters used in text to  "
            "image pipelines, including prompts and prompt embedding overrides."
            "If your pipeline's set of arguments has minor changes from one of the common sets of arguments, "
            "do not make modifications to the existing common sets of arguments. I.e. a text to image pipeline "
            "with non-configurable height and width arguments should set the attribute as "
            "`params = TEXT_TO_IMAGE_PARAMS - {'height', 'width'}`. "
            "See existing pipeline tests for reference."
        )

    @property
    def batch_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `batch_params` in the child test class. "
            "`batch_params` are the parameters required to be batched when passed to the pipeline's "
            "`__call__` method. `pipeline_params.py` provides some common sets of parameters such as "
            "`TEXT_TO_IMAGE_BATCH_PARAMS`, `IMAGE_VARIATION_BATCH_PARAMS`, etc... If your pipeline's "
            "set of batch arguments has minor changes from one of the common sets of batch arguments, "
            "do not make modifications to the existing common sets of batch arguments. I.e. a text to "
            "image pipeline `negative_prompt` is not batched should set the attribute as "
            "`batch_params = TEXT_TO_IMAGE_BATCH_PARAMS - {'negative_prompt'}`. "
            "See existing pipeline tests for reference."
        )

286
287
288
289
290
291
    def tearDown(self):
        # clean up the VRAM after each test in case of CUDA runtime errors
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

292
    def test_save_load_local(self, expected_max_difference=1e-4):
293
294
295
296
297
298
299
300
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

301
302
303
        logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
        logger.setLevel(diffusers.logging.INFO)

304
305
        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
306
307
308
309
310
311
312
313

            with CaptureLogger(logger) as cap_logger:
                pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)

            for name in pipe_loaded.components.keys():
                if name not in pipe_loaded._optional_components:
                    assert name in str(cap_logger)

314
315
316
317
318
319
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

320
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
321
        self.assertLess(max_diff, expected_max_difference)
322

323
324
325
326
327
    def test_pipeline_call_signature(self):
        self.assertTrue(
            hasattr(self.pipeline_class, "__call__"), f"{self.pipeline_class} should have a `__call__` method"
        )

328
329
        parameters = inspect.signature(self.pipeline_class.__call__).parameters

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
        optional_parameters = set()

        for k, v in parameters.items():
            if v.default != inspect._empty:
                optional_parameters.add(k)

        parameters = set(parameters.keys())
        parameters.remove("self")
        parameters.discard("kwargs")  # kwargs can be added if arguments of pipeline call function are deprecated

        remaining_required_parameters = set()

        for param in self.params:
            if param not in parameters:
                remaining_required_parameters.add(param)
345

346
347
348
349
350
351
        self.assertTrue(
            len(remaining_required_parameters) == 0,
            f"Required parameters not present: {remaining_required_parameters}",
        )

        remaining_required_optional_parameters = set()
352

353
        for param in self.required_optional_params:
354
355
356
357
358
359
360
            if param not in optional_parameters:
                remaining_required_optional_parameters.add(param)

        self.assertTrue(
            len(remaining_required_optional_parameters) == 0,
            f"Required optional parameters not present: {remaining_required_optional_parameters}",
        )
361

362
363
    def test_inference_batch_consistent(self, batch_sizes=[2, 4, 13]):
        self._test_inference_batch_consistent(batch_sizes=batch_sizes)
364

365
366
367
    def _test_inference_batch_consistent(
        self, batch_sizes=[2, 4, 13], additional_params_copy_to_batched_inputs=["num_inference_steps"]
    ):
368
369
370
371
372
373
374
375
376
377
378
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
379
        for batch_size in batch_sizes:
380
381
            batched_inputs = {}
            for name, value in inputs.items():
382
                if name in self.batch_params:
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
                    # prompt is string
                    if name == "prompt":
                        len_prompt = len(value)
                        # make unequal batch sizes
                        batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]

                        # make last batch super long
                        batched_inputs[name][-1] = 2000 * "very long"
                    # or else we have images
                    else:
                        batched_inputs[name] = batch_size * [value]
                elif name == "batch_size":
                    batched_inputs[name] = batch_size
                else:
                    batched_inputs[name] = value

399
            for arg in additional_params_copy_to_batched_inputs:
400
401
                batched_inputs[arg] = inputs[arg]

YiYi Xu's avatar
YiYi Xu committed
402
            batched_inputs["output_type"] = "np"
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

            if self.pipeline_class.__name__ == "DanceDiffusionPipeline":
                batched_inputs.pop("output_type")

            output = pipe(**batched_inputs)

            assert len(output[0]) == batch_size

            batched_inputs["output_type"] = "np"

            if self.pipeline_class.__name__ == "DanceDiffusionPipeline":
                batched_inputs.pop("output_type")

            output = pipe(**batched_inputs)[0]

            assert output.shape[0] == batch_size

        logger.setLevel(level=diffusers.logging.WARNING)
421

422
423
    def test_inference_batch_single_identical(self, batch_size=3, expected_max_diff=1e-4):
        self._test_inference_batch_single_identical(batch_size=batch_size, expected_max_diff=expected_max_diff)
424
425

    def _test_inference_batch_single_identical(
426
        self,
427
        batch_size=3,
428
429
430
        test_max_difference=None,
        test_mean_pixel_difference=None,
        relax_max_difference=False,
431
        expected_max_diff=1e-4,
432
        additional_params_copy_to_batched_inputs=["num_inference_steps"],
433
434
435
436
437
438
439
440
441
442
    ):
        if test_max_difference is None:
            # TODO(Pedro) - not sure why, but not at all reproducible at the moment it seems
            # make sure that batched and non-batched is identical
            test_max_difference = torch_device != "mps"

        if test_mean_pixel_difference is None:
            # TODO same as above
            test_mean_pixel_difference = torch_device != "mps"

443
444
445
446
447
448
449
450
451
452
453
454
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
        batched_inputs = {}
455
        batch_size = batch_size
456
        for name, value in inputs.items():
457
            if name in self.batch_params:
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
                # prompt is string
                if name == "prompt":
                    len_prompt = len(value)
                    # make unequal batch sizes
                    batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]

                    # make last batch super long
                    batched_inputs[name][-1] = 2000 * "very long"
                # or else we have images
                else:
                    batched_inputs[name] = batch_size * [value]
            elif name == "batch_size":
                batched_inputs[name] = batch_size
            elif name == "generator":
                batched_inputs[name] = [self.get_generator(i) for i in range(batch_size)]
            else:
                batched_inputs[name] = value

476
        for arg in additional_params_copy_to_batched_inputs:
477
            batched_inputs[arg] = inputs[arg]
478
479
480
481
482
483
484
485
486
487
488

        if self.pipeline_class.__name__ != "DanceDiffusionPipeline":
            batched_inputs["output_type"] = "np"

        output_batch = pipe(**batched_inputs)
        assert output_batch[0].shape[0] == batch_size

        inputs["generator"] = self.get_generator(0)

        output = pipe(**inputs)

489
        logger.setLevel(level=diffusers.logging.WARNING)
490
491
492
493
494
        if test_max_difference:
            if relax_max_difference:
                # Taking the median of the largest <n> differences
                # is resilient to outliers
                diff = np.abs(output_batch[0][0] - output[0][0])
Will Berman's avatar
Will Berman committed
495
                diff = diff.flatten()
496
497
498
499
                diff.sort()
                max_diff = np.median(diff[-5:])
            else:
                max_diff = np.abs(output_batch[0][0] - output[0][0]).max()
500
            assert max_diff < expected_max_diff
501
502
503

        if test_mean_pixel_difference:
            assert_mean_pixel_difference(output_batch[0][0], output[0][0])
504

505
    def test_dict_tuple_outputs_equivalent(self, expected_max_difference=1e-4):
506
507
508
509
510
511
512
513
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(torch_device))[0]
        output_tuple = pipe(**self.get_dummy_inputs(torch_device), return_dict=False)[0]

514
        max_diff = np.abs(to_np(output) - to_np(output_tuple)).max()
515
        self.assertLess(max_diff, expected_max_difference)
516
517
518
519
520
521
522
523
524

    def test_components_function(self):
        init_components = self.get_dummy_components()
        pipe = self.pipeline_class(**init_components)

        self.assertTrue(hasattr(pipe, "components"))
        self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))

    @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
525
    def test_float16_inference(self, expected_max_diff=1e-2):
526
527
528
529
530
531
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        pipe_fp16 = self.pipeline_class(**components)
532
        pipe_fp16.to(torch_device, torch.float16)
533
534
535
536
537
        pipe_fp16.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(torch_device))[0]
        output_fp16 = pipe_fp16(**self.get_dummy_inputs(torch_device))[0]

538
        max_diff = np.abs(to_np(output) - to_np(output_fp16)).max()
539
        self.assertLess(max_diff, expected_max_diff, "The outputs of the fp16 and fp32 pipelines are too different.")
540
541

    @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
542
    def test_save_load_float16(self, expected_max_diff=1e-2):
543
544
545
546
547
548
549
550
551
552
553
554
555
        components = self.get_dummy_components()
        for name, module in components.items():
            if hasattr(module, "half"):
                components[name] = module.to(torch_device).half()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
556
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16)
557
558
559
560
561
562
563
564
565
566
567
568
569
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for name, component in pipe_loaded.components.items():
            if hasattr(component, "dtype"):
                self.assertTrue(
                    component.dtype == torch.float16,
                    f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.",
                )

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

570
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
571
572
573
        self.assertLess(
            max_diff, expected_max_diff, "The output of the fp16 pipeline changed after saving and loading."
        )
574

575
    def test_save_load_optional_components(self, expected_max_difference=1e-4):
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
        if not hasattr(self.pipeline_class, "_optional_components"):
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

606
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
607
        self.assertLess(max_diff, expected_max_difference)
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626

    @unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices")
    def test_to_device(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        pipe.to("cpu")
        model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
        self.assertTrue(all(device == "cpu" for device in model_devices))

        output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0]
        self.assertTrue(np.isnan(output_cpu).sum() == 0)

        pipe.to("cuda")
        model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
        self.assertTrue(all(device == "cuda" for device in model_devices))

        output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0]
627
        self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0)
628

629
630
631
632
633
634
635
636
637
638
639
640
    def test_to_dtype(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes))

        pipe.to(torch_dtype=torch.float16)
        model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes))

641
642
    def test_attention_slicing_forward_pass(self, expected_max_diff=1e-3):
        self._test_attention_slicing_forward_pass(expected_max_diff=expected_max_diff)
643

644
645
646
    def _test_attention_slicing_forward_pass(
        self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
    ):
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
        if not self.test_attention_slicing:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_without_slicing = pipe(**inputs)[0]

        pipe.enable_attention_slicing(slice_size=1)
        inputs = self.get_dummy_inputs(torch_device)
        output_with_slicing = pipe(**inputs)[0]

662
        if test_max_difference:
663
            max_diff = np.abs(to_np(output_with_slicing) - to_np(output_without_slicing)).max()
664
            self.assertLess(max_diff, expected_max_diff, "Attention slicing should not affect the inference results")
665

666
667
        if test_mean_pixel_difference:
            assert_mean_pixel_difference(output_with_slicing[0], output_without_slicing[0])
668
669

    @unittest.skipIf(
670
671
        torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.14.0"),
        reason="CPU offload is only available with CUDA and `accelerate v0.14.0` or higher",
672
    )
673
    def test_cpu_offload_forward_pass(self, expected_max_diff=1e-4):
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
        if not self.test_cpu_offload:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_without_offload = pipe(**inputs)[0]

        pipe.enable_sequential_cpu_offload()
        inputs = self.get_dummy_inputs(torch_device)
        output_with_offload = pipe(**inputs)[0]

689
        max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
690
        self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results")
691
692
693
694
695

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
Kashif Rasul's avatar
Kashif Rasul committed
696
    def test_xformers_attention_forwardGenerator_pass(self):
Will Berman's avatar
Will Berman committed
697
698
        self._test_xformers_attention_forwardGenerator_pass()

699
700
701
    def _test_xformers_attention_forwardGenerator_pass(
        self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-4
    ):
702
703
704
705
706
707
708
709
710
        if not self.test_xformers_attention:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
711
        output_without_offload = pipe(**inputs)[0]
712
713
714
        output_without_offload = (
            output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload
        )
715
716
717

        pipe.enable_xformers_memory_efficient_attention()
        inputs = self.get_dummy_inputs(torch_device)
718
        output_with_offload = pipe(**inputs)[0]
719
720
721
        output_with_offload = (
            output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload
        )
722

Will Berman's avatar
Will Berman committed
723
724
        if test_max_difference:
            max_diff = np.abs(output_with_offload - output_without_offload).max()
725
            self.assertLess(max_diff, expected_max_diff, "XFormers attention should not affect the inference results")
Will Berman's avatar
Will Berman committed
726

727
728
        if test_mean_pixel_difference:
            assert_mean_pixel_difference(output_with_offload[0], output_without_offload[0])
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750

    def test_progress_bar(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            stderr = stderr.getvalue()
            # we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img,
            # so we just match "5" in "#####| 1/5 [00:01<00:00]"
            max_steps = re.search("/(.*?) ", stderr).group(1)
            self.assertTrue(max_steps is not None and len(max_steps) > 0)
            self.assertTrue(
                f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step"
            )

        pipe.set_progress_bar_config(disable=True)
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled")
751

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
    def test_num_images_per_prompt(self):
        sig = inspect.signature(self.pipeline_class.__call__)

        if "num_images_per_prompt" not in sig.parameters:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        batch_sizes = [1, 2]
        num_images_per_prompts = [1, 2]

        for batch_size in batch_sizes:
            for num_images_per_prompt in num_images_per_prompts:
                inputs = self.get_dummy_inputs(torch_device)

                for key in inputs.keys():
                    if key in self.batch_params:
                        inputs[key] = batch_size * [inputs[key]]

774
                images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0]
775
776
777

                assert images.shape[0] == batch_size * num_images_per_prompt

778
779
780
781

# Some models (e.g. unCLIP) are extremely likely to significantly deviate depending on which hardware is used.
# This helper function is used to check that the image doesn't deviate on average more than 10 pixels from a
# reference image.
782
def assert_mean_pixel_difference(image, expected_image, expected_max_diff=10):
783
784
785
    image = np.asarray(DiffusionPipeline.numpy_to_pil(image)[0], dtype=np.float32)
    expected_image = np.asarray(DiffusionPipeline.numpy_to_pil(expected_image)[0], dtype=np.float32)
    avg_diff = np.abs(image - expected_image).mean()
786
    assert avg_diff < expected_max_diff, f"Error image deviates {avg_diff} pixels on average"