test_models_unet_1d.py 11.3 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

Aryan's avatar
Aryan committed
18
import pytest
19
20
21
import torch

from diffusers import UNet1DModel
Arsalan's avatar
Arsalan committed
22
23
24
25
26
27
from diffusers.utils.testing_utils import (
    backend_manual_seed,
    floats_tensor,
    slow,
    torch_device,
)
28

29
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
30
31


32
class UNet1DModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
33
    model_class = UNet1DModel
34
    main_input_name = "sample"
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

    @property
    def dummy_input(self):
        batch_size = 4
        num_features = 14
        seq_len = 16

        noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device)
        time_step = torch.tensor([10] * batch_size).to(torch_device)

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (4, 14, 16)

    @property
    def output_shape(self):
        return (4, 14, 16)

55
    @unittest.skip("Test not supported.")
56
57
58
    def test_ema_training(self):
        pass

59
    @unittest.skip("Test not supported.")
60
61
62
    def test_training(self):
        pass

63
64
65
66
    @unittest.skip("Test not supported.")
    def test_layerwise_casting_training(self):
        pass

67
68
69
70
71
72
    def test_determinism(self):
        super().test_determinism()

    def test_outputs_equivalence(self):
        super().test_outputs_equivalence()

73
74
    def test_from_save_pretrained(self):
        super().test_from_save_pretrained()
75

Pedro Cuenca's avatar
Pedro Cuenca committed
76
77
78
    def test_from_save_pretrained_variant(self):
        super().test_from_save_pretrained_variant()

79
80
    def test_model_from_pretrained(self):
        super().test_model_from_pretrained()
81
82
83
84
85
86

    def test_output(self):
        super().test_output()

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
87
            "block_out_channels": (8, 8, 16, 16),
88
89
90
91
92
93
94
95
96
97
            "in_channels": 14,
            "out_channels": 14,
            "time_embedding_type": "positional",
            "use_timestep_embedding": True,
            "flip_sin_to_cos": False,
            "freq_shift": 1.0,
            "out_block_type": "OutConv1DBlock",
            "mid_block_type": "MidResTemporalBlock1D",
            "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"),
            "up_block_types": ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D"),
98
            "act_fn": "swish",
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_from_pretrained_hub(self):
        model, loading_info = UNet1DModel.from_pretrained(
            "bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="unet"
        )
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = UNet1DModel.from_pretrained("bglick13/hopper-medium-v2-value-function-hor32", subfolder="unet")
        torch.manual_seed(0)
Arsalan's avatar
Arsalan committed
118
        backend_manual_seed(torch_device, 0)
119

120
        num_features = model.config.in_channels
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        seq_len = 16
        noise = torch.randn((1, seq_len, num_features)).permute(
            0, 2, 1
        )  # match original, we can update values and remove
        time_step = torch.full((num_features,), 0)

        with torch.no_grad():
            output = model(noise, time_step).sample.permute(0, 2, 1)

        output_slice = output[0, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([-2.137172, 1.1426016, 0.3688687, -0.766922, 0.7303146, 0.11038864, -0.4760633, 0.13270172, 0.02591348])
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-3))

136
    @unittest.skip("Test not supported.")
137
138
139
140
    def test_forward_with_norm_groups(self):
        # Not implemented yet for this UNet
        pass

141
142
143
    @slow
    def test_unet_1d_maestro(self):
        model_id = "harmonai/maestro-150k"
144
        model = UNet1DModel.from_pretrained(model_id, subfolder="unet")
145
146
147
148
149
150
151
152
153
154
155
156
        model.to(torch_device)

        sample_size = 65536
        noise = torch.sin(torch.arange(sample_size)[None, None, :].repeat(1, 2, 1)).to(torch_device)
        timestep = torch.tensor([1]).to(torch_device)

        with torch.no_grad():
            output = model(noise, timestep).sample

        output_sum = output.abs().sum()
        output_max = output.abs().max()

157
        assert (output_sum - 224.0896).abs() < 0.5
158
        assert (output_max - 0.0607).abs() < 4e-4
159

Aryan's avatar
Aryan committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    @pytest.mark.xfail(
        reason=(
            "RuntimeError: 'fill_out' not implemented for 'Float8_e4m3fn'. The error is caused due to certain torch.float8_e4m3fn and torch.float8_e5m2 operations "
            "not being supported when using deterministic algorithms (which is what the tests run with). To fix:\n"
            "1. Wait for next PyTorch release: https://github.com/pytorch/pytorch/issues/137160.\n"
            "2. Unskip this test."
        ),
    )
    def test_layerwise_casting_inference(self):
        super().test_layerwise_casting_inference()

    @pytest.mark.xfail(
        reason=(
            "RuntimeError: 'fill_out' not implemented for 'Float8_e4m3fn'. The error is caused due to certain torch.float8_e4m3fn and torch.float8_e5m2 operations "
            "not being supported when using deterministic algorithms (which is what the tests run with). To fix:\n"
            "1. Wait for next PyTorch release: https://github.com/pytorch/pytorch/issues/137160.\n"
            "2. Unskip this test."
        ),
    )
    def test_layerwise_casting_memory(self):
        pass

182

183
class UNetRLModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
184
    model_class = UNet1DModel
185
    main_input_name = "sample"
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

    @property
    def dummy_input(self):
        batch_size = 4
        num_features = 14
        seq_len = 16

        noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device)
        time_step = torch.tensor([10] * batch_size).to(torch_device)

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (4, 14, 16)

    @property
    def output_shape(self):
        return (4, 14, 1)

    def test_determinism(self):
        super().test_determinism()

    def test_outputs_equivalence(self):
        super().test_outputs_equivalence()

212
213
    def test_from_save_pretrained(self):
        super().test_from_save_pretrained()
214

Pedro Cuenca's avatar
Pedro Cuenca committed
215
216
217
    def test_from_save_pretrained_variant(self):
        super().test_from_save_pretrained_variant()

218
219
    def test_model_from_pretrained(self):
        super().test_model_from_pretrained()
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

    def test_output(self):
        # UNetRL is a value-function is different output shape
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.sample

        self.assertIsNotNone(output)
        expected_shape = torch.Size((inputs_dict["sample"].shape[0], 1))
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

238
    @unittest.skip("Test not supported.")
239
240
241
    def test_ema_training(self):
        pass

242
    @unittest.skip("Test not supported.")
243
244
245
    def test_training(self):
        pass

246
247
248
249
    @unittest.skip("Test not supported.")
    def test_layerwise_casting_training(self):
        pass

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "in_channels": 14,
            "out_channels": 14,
            "down_block_types": ["DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"],
            "up_block_types": [],
            "out_block_type": "ValueFunction",
            "mid_block_type": "ValueFunctionMidBlock1D",
            "block_out_channels": [32, 64, 128, 256],
            "layers_per_block": 1,
            "downsample_each_block": True,
            "use_timestep_embedding": True,
            "freq_shift": 1.0,
            "flip_sin_to_cos": False,
            "time_embedding_type": "positional",
            "act_fn": "mish",
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_from_pretrained_hub(self):
        value_function, vf_loading_info = UNet1DModel.from_pretrained(
            "bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="value_function"
        )
        self.assertIsNotNone(value_function)
        self.assertEqual(len(vf_loading_info["missing_keys"]), 0)

        value_function.to(torch_device)
        image = value_function(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        value_function, vf_loading_info = UNet1DModel.from_pretrained(
            "bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="value_function"
        )
        torch.manual_seed(0)
Arsalan's avatar
Arsalan committed
287
        backend_manual_seed(torch_device, 0)
288

289
        num_features = value_function.config.in_channels
290
291
292
293
294
295
296
297
298
299
300
301
302
303
        seq_len = 14
        noise = torch.randn((1, seq_len, num_features)).permute(
            0, 2, 1
        )  # match original, we can update values and remove
        time_step = torch.full((num_features,), 0)

        with torch.no_grad():
            output = value_function(noise, time_step).sample

        # fmt: off
        expected_output_slice = torch.tensor([165.25] * seq_len)
        # fmt: on
        self.assertTrue(torch.allclose(output, expected_output_slice, rtol=1e-3))

304
    @unittest.skip("Test not supported.")
305
306
307
    def test_forward_with_norm_groups(self):
        # Not implemented yet for this UNet
        pass
Aryan's avatar
Aryan committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

    @pytest.mark.xfail(
        reason=(
            "RuntimeError: 'fill_out' not implemented for 'Float8_e4m3fn'. The error is caused due to certain torch.float8_e4m3fn and torch.float8_e5m2 operations "
            "not being supported when using deterministic algorithms (which is what the tests run with). To fix:\n"
            "1. Wait for next PyTorch release: https://github.com/pytorch/pytorch/issues/137160.\n"
            "2. Unskip this test."
        ),
    )
    def test_layerwise_casting_inference(self):
        pass

    @pytest.mark.xfail(
        reason=(
            "RuntimeError: 'fill_out' not implemented for 'Float8_e4m3fn'. The error is caused due to certain torch.float8_e4m3fn and torch.float8_e5m2 operations "
            "not being supported when using deterministic algorithms (which is what the tests run with). To fix:\n"
            "1. Wait for next PyTorch release: https://github.com/pytorch/pytorch/issues/137160.\n"
            "2. Unskip this test."
        ),
    )
    def test_layerwise_casting_memory(self):
        pass