test_models_unet_1d.py 8.99 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import torch

from diffusers import UNet1DModel
Arsalan's avatar
Arsalan committed
21
22
23
24
25
26
from diffusers.utils.testing_utils import (
    backend_manual_seed,
    floats_tensor,
    slow,
    torch_device,
)
27

28
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
29
30


31
class UNet1DModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
32
    model_class = UNet1DModel
33
    main_input_name = "sample"
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

    @property
    def dummy_input(self):
        batch_size = 4
        num_features = 14
        seq_len = 16

        noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device)
        time_step = torch.tensor([10] * batch_size).to(torch_device)

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (4, 14, 16)

    @property
    def output_shape(self):
        return (4, 14, 16)

54
    @unittest.skip("Test not supported.")
55
56
57
    def test_ema_training(self):
        pass

58
    @unittest.skip("Test not supported.")
59
60
61
62
63
64
65
66
67
    def test_training(self):
        pass

    def test_determinism(self):
        super().test_determinism()

    def test_outputs_equivalence(self):
        super().test_outputs_equivalence()

68
69
    def test_from_save_pretrained(self):
        super().test_from_save_pretrained()
70

Pedro Cuenca's avatar
Pedro Cuenca committed
71
72
73
    def test_from_save_pretrained_variant(self):
        super().test_from_save_pretrained_variant()

74
75
    def test_model_from_pretrained(self):
        super().test_model_from_pretrained()
76
77
78
79
80
81

    def test_output(self):
        super().test_output()

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
82
            "block_out_channels": (8, 8, 16, 16),
83
84
85
86
87
88
89
90
91
92
            "in_channels": 14,
            "out_channels": 14,
            "time_embedding_type": "positional",
            "use_timestep_embedding": True,
            "flip_sin_to_cos": False,
            "freq_shift": 1.0,
            "out_block_type": "OutConv1DBlock",
            "mid_block_type": "MidResTemporalBlock1D",
            "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"),
            "up_block_types": ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D"),
93
            "act_fn": "swish",
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_from_pretrained_hub(self):
        model, loading_info = UNet1DModel.from_pretrained(
            "bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="unet"
        )
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = UNet1DModel.from_pretrained("bglick13/hopper-medium-v2-value-function-hor32", subfolder="unet")
        torch.manual_seed(0)
Arsalan's avatar
Arsalan committed
113
        backend_manual_seed(torch_device, 0)
114

115
        num_features = model.config.in_channels
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
        seq_len = 16
        noise = torch.randn((1, seq_len, num_features)).permute(
            0, 2, 1
        )  # match original, we can update values and remove
        time_step = torch.full((num_features,), 0)

        with torch.no_grad():
            output = model(noise, time_step).sample.permute(0, 2, 1)

        output_slice = output[0, -3:, -3:].flatten()
        # fmt: off
        expected_output_slice = torch.tensor([-2.137172, 1.1426016, 0.3688687, -0.766922, 0.7303146, 0.11038864, -0.4760633, 0.13270172, 0.02591348])
        # fmt: on
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-3))

131
    @unittest.skip("Test not supported.")
132
133
134
135
    def test_forward_with_norm_groups(self):
        # Not implemented yet for this UNet
        pass

136
137
138
    @slow
    def test_unet_1d_maestro(self):
        model_id = "harmonai/maestro-150k"
139
        model = UNet1DModel.from_pretrained(model_id, subfolder="unet")
140
141
142
143
144
145
146
147
148
149
150
151
        model.to(torch_device)

        sample_size = 65536
        noise = torch.sin(torch.arange(sample_size)[None, None, :].repeat(1, 2, 1)).to(torch_device)
        timestep = torch.tensor([1]).to(torch_device)

        with torch.no_grad():
            output = model(noise, timestep).sample

        output_sum = output.abs().sum()
        output_max = output.abs().max()

152
        assert (output_sum - 224.0896).abs() < 0.5
153
        assert (output_max - 0.0607).abs() < 4e-4
154
155


156
class UNetRLModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
157
    model_class = UNet1DModel
158
    main_input_name = "sample"
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

    @property
    def dummy_input(self):
        batch_size = 4
        num_features = 14
        seq_len = 16

        noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device)
        time_step = torch.tensor([10] * batch_size).to(torch_device)

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (4, 14, 16)

    @property
    def output_shape(self):
        return (4, 14, 1)

    def test_determinism(self):
        super().test_determinism()

    def test_outputs_equivalence(self):
        super().test_outputs_equivalence()

185
186
    def test_from_save_pretrained(self):
        super().test_from_save_pretrained()
187

Pedro Cuenca's avatar
Pedro Cuenca committed
188
189
190
    def test_from_save_pretrained_variant(self):
        super().test_from_save_pretrained_variant()

191
192
    def test_model_from_pretrained(self):
        super().test_model_from_pretrained()
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

    def test_output(self):
        # UNetRL is a value-function is different output shape
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.sample

        self.assertIsNotNone(output)
        expected_shape = torch.Size((inputs_dict["sample"].shape[0], 1))
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

211
    @unittest.skip("Test not supported.")
212
213
214
    def test_ema_training(self):
        pass

215
    @unittest.skip("Test not supported.")
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    def test_training(self):
        pass

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "in_channels": 14,
            "out_channels": 14,
            "down_block_types": ["DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"],
            "up_block_types": [],
            "out_block_type": "ValueFunction",
            "mid_block_type": "ValueFunctionMidBlock1D",
            "block_out_channels": [32, 64, 128, 256],
            "layers_per_block": 1,
            "downsample_each_block": True,
            "use_timestep_embedding": True,
            "freq_shift": 1.0,
            "flip_sin_to_cos": False,
            "time_embedding_type": "positional",
            "act_fn": "mish",
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_from_pretrained_hub(self):
        value_function, vf_loading_info = UNet1DModel.from_pretrained(
            "bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="value_function"
        )
        self.assertIsNotNone(value_function)
        self.assertEqual(len(vf_loading_info["missing_keys"]), 0)

        value_function.to(torch_device)
        image = value_function(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        value_function, vf_loading_info = UNet1DModel.from_pretrained(
            "bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="value_function"
        )
        torch.manual_seed(0)
Arsalan's avatar
Arsalan committed
256
        backend_manual_seed(torch_device, 0)
257

258
        num_features = value_function.config.in_channels
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        seq_len = 14
        noise = torch.randn((1, seq_len, num_features)).permute(
            0, 2, 1
        )  # match original, we can update values and remove
        time_step = torch.full((num_features,), 0)

        with torch.no_grad():
            output = value_function(noise, time_step).sample

        # fmt: off
        expected_output_slice = torch.tensor([165.25] * seq_len)
        # fmt: on
        self.assertTrue(torch.allclose(output, expected_output_slice, rtol=1e-3))

273
    @unittest.skip("Test not supported.")
274
275
276
    def test_forward_with_norm_groups(self):
        # Not implemented yet for this UNet
        pass