auto_pipeline.py 57.6 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
YiYi Xu's avatar
YiYi Xu committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import OrderedDict

18
19
from huggingface_hub.utils import validate_hf_hub_args

YiYi Xu's avatar
YiYi Xu committed
20
from ..configuration_utils import ConfigMixin
21
from ..models.controlnets import ControlNetUnionModel
22
from ..utils import is_sentencepiece_available
23
from .aura_flow import AuraFlowPipeline
Edna's avatar
Edna committed
24
from .chroma import ChromaPipeline
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
25
from .cogview3 import CogView3PlusPipeline
Yuxuan Zhang's avatar
Yuxuan Zhang committed
26
from .cogview4 import CogView4ControlPipeline, CogView4Pipeline
YiYi Xu's avatar
YiYi Xu committed
27
28
29
30
from .controlnet import (
    StableDiffusionControlNetImg2ImgPipeline,
    StableDiffusionControlNetInpaintPipeline,
    StableDiffusionControlNetPipeline,
31
    StableDiffusionXLControlNetImg2ImgPipeline,
32
    StableDiffusionXLControlNetInpaintPipeline,
YiYi Xu's avatar
YiYi Xu committed
33
    StableDiffusionXLControlNetPipeline,
34
35
36
    StableDiffusionXLControlNetUnionImg2ImgPipeline,
    StableDiffusionXLControlNetUnionInpaintPipeline,
    StableDiffusionXLControlNetUnionPipeline,
YiYi Xu's avatar
YiYi Xu committed
37
)
38
39
40
41
from .controlnet_sd3 import (
    StableDiffusion3ControlNetInpaintingPipeline,
    StableDiffusion3ControlNetPipeline,
)
YiYi Xu's avatar
YiYi Xu committed
42
from .deepfloyd_if import IFImg2ImgPipeline, IFInpaintingPipeline, IFPipeline
43
from .flux import (
44
45
    FluxControlImg2ImgPipeline,
    FluxControlInpaintPipeline,
46
47
48
    FluxControlNetImg2ImgPipeline,
    FluxControlNetInpaintPipeline,
    FluxControlNetPipeline,
49
    FluxControlPipeline,
50
51
    FluxImg2ImgPipeline,
    FluxInpaintPipeline,
jlonge4's avatar
jlonge4 committed
52
    FluxKontextPipeline,
53
54
    FluxPipeline,
)
55
from .hunyuandit import HunyuanDiTPipeline
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from .kandinsky import (
    KandinskyCombinedPipeline,
    KandinskyImg2ImgCombinedPipeline,
    KandinskyImg2ImgPipeline,
    KandinskyInpaintCombinedPipeline,
    KandinskyInpaintPipeline,
    KandinskyPipeline,
)
from .kandinsky2_2 import (
    KandinskyV22CombinedPipeline,
    KandinskyV22Img2ImgCombinedPipeline,
    KandinskyV22Img2ImgPipeline,
    KandinskyV22InpaintCombinedPipeline,
    KandinskyV22InpaintPipeline,
    KandinskyV22Pipeline,
)
72
from .kandinsky3 import Kandinsky3Img2ImgPipeline, Kandinsky3Pipeline
73
from .latent_consistency_models import LatentConsistencyModelImg2ImgPipeline, LatentConsistencyModelPipeline
74
75
from .lumina import LuminaPipeline
from .lumina2 import Lumina2Pipeline
YiYi Xu's avatar
YiYi Xu committed
76
from .pag import (
77
    HunyuanDiTPAGPipeline,
78
    PixArtSigmaPAGPipeline,
79
    SanaPAGPipeline,
80
    StableDiffusion3PAGImg2ImgPipeline,
81
    StableDiffusion3PAGPipeline,
82
    StableDiffusionControlNetPAGInpaintPipeline,
83
    StableDiffusionControlNetPAGPipeline,
84
    StableDiffusionPAGImg2ImgPipeline,
85
    StableDiffusionPAGInpaintPipeline,
86
    StableDiffusionPAGPipeline,
87
    StableDiffusionXLControlNetPAGImg2ImgPipeline,
YiYi Xu's avatar
YiYi Xu committed
88
89
90
91
92
    StableDiffusionXLControlNetPAGPipeline,
    StableDiffusionXLPAGImg2ImgPipeline,
    StableDiffusionXLPAGInpaintPipeline,
    StableDiffusionXLPAGPipeline,
)
93
from .pixart_alpha import PixArtAlphaPipeline, PixArtSigmaPipeline
YiYi Xu's avatar
YiYi Xu committed
94
95
96
97
from .qwenimage import (
    QwenImageControlNetPipeline,
    QwenImageEditInpaintPipeline,
    QwenImageEditPipeline,
98
    QwenImageEditPlusPipeline,
YiYi Xu's avatar
YiYi Xu committed
99
100
101
102
    QwenImageImg2ImgPipeline,
    QwenImageInpaintPipeline,
    QwenImagePipeline,
)
103
from .sana import SanaPipeline
104
from .stable_cascade import StableCascadeCombinedPipeline, StableCascadeDecoderPipeline
YiYi Xu's avatar
YiYi Xu committed
105
106
107
108
109
from .stable_diffusion import (
    StableDiffusionImg2ImgPipeline,
    StableDiffusionInpaintPipeline,
    StableDiffusionPipeline,
)
110
111
from .stable_diffusion_3 import (
    StableDiffusion3Img2ImgPipeline,
112
    StableDiffusion3InpaintPipeline,
113
114
    StableDiffusion3Pipeline,
)
YiYi Xu's avatar
YiYi Xu committed
115
116
117
118
119
from .stable_diffusion_xl import (
    StableDiffusionXLImg2ImgPipeline,
    StableDiffusionXLInpaintPipeline,
    StableDiffusionXLPipeline,
)
Kashif Rasul's avatar
Kashif Rasul committed
120
from .wuerstchen import WuerstchenCombinedPipeline, WuerstchenDecoderPipeline
YiYi Xu's avatar
YiYi Xu committed
121
122
123
124
125
126


AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
    [
        ("stable-diffusion", StableDiffusionPipeline),
        ("stable-diffusion-xl", StableDiffusionXLPipeline),
127
        ("stable-diffusion-3", StableDiffusion3Pipeline),
128
        ("stable-diffusion-3-pag", StableDiffusion3PAGPipeline),
YiYi Xu's avatar
YiYi Xu committed
129
        ("if", IFPipeline),
130
        ("hunyuan", HunyuanDiTPipeline),
131
        ("hunyuan-pag", HunyuanDiTPAGPipeline),
132
133
        ("kandinsky", KandinskyCombinedPipeline),
        ("kandinsky22", KandinskyV22CombinedPipeline),
134
        ("kandinsky3", Kandinsky3Pipeline),
YiYi Xu's avatar
YiYi Xu committed
135
136
        ("stable-diffusion-controlnet", StableDiffusionControlNetPipeline),
        ("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetPipeline),
137
        ("stable-diffusion-xl-controlnet-union", StableDiffusionXLControlNetUnionPipeline),
138
        ("stable-diffusion-3-controlnet", StableDiffusion3ControlNetPipeline),
Kashif Rasul's avatar
Kashif Rasul committed
139
        ("wuerstchen", WuerstchenCombinedPipeline),
140
        ("cascade", StableCascadeCombinedPipeline),
141
        ("lcm", LatentConsistencyModelPipeline),
142
143
        ("pixart-alpha", PixArtAlphaPipeline),
        ("pixart-sigma", PixArtSigmaPipeline),
144
145
        ("sana", SanaPipeline),
        ("sana-pag", SanaPAGPipeline),
146
        ("stable-diffusion-pag", StableDiffusionPAGPipeline),
147
        ("stable-diffusion-controlnet-pag", StableDiffusionControlNetPAGPipeline),
YiYi Xu's avatar
YiYi Xu committed
148
149
        ("stable-diffusion-xl-pag", StableDiffusionXLPAGPipeline),
        ("stable-diffusion-xl-controlnet-pag", StableDiffusionXLControlNetPAGPipeline),
150
        ("pixart-sigma-pag", PixArtSigmaPAGPipeline),
151
        ("auraflow", AuraFlowPipeline),
Sayak Paul's avatar
Sayak Paul committed
152
        ("flux", FluxPipeline),
153
        ("flux-control", FluxControlPipeline),
154
        ("flux-controlnet", FluxControlNetPipeline),
jlonge4's avatar
jlonge4 committed
155
        ("flux-kontext", FluxKontextPipeline),
156
157
        ("lumina", LuminaPipeline),
        ("lumina2", Lumina2Pipeline),
Edna's avatar
Edna committed
158
        ("chroma", ChromaPipeline),
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
159
        ("cogview3", CogView3PlusPipeline),
160
        ("cogview4", CogView4Pipeline),
Yuxuan Zhang's avatar
Yuxuan Zhang committed
161
        ("cogview4-control", CogView4ControlPipeline),
YiYi Xu's avatar
YiYi Xu committed
162
163
        ("qwenimage", QwenImagePipeline),
        ("qwenimage-controlnet", QwenImageControlNetPipeline),
YiYi Xu's avatar
YiYi Xu committed
164
165
166
167
168
169
170
    ]
)

AUTO_IMAGE2IMAGE_PIPELINES_MAPPING = OrderedDict(
    [
        ("stable-diffusion", StableDiffusionImg2ImgPipeline),
        ("stable-diffusion-xl", StableDiffusionXLImg2ImgPipeline),
171
        ("stable-diffusion-3", StableDiffusion3Img2ImgPipeline),
172
        ("stable-diffusion-3-pag", StableDiffusion3PAGImg2ImgPipeline),
YiYi Xu's avatar
YiYi Xu committed
173
        ("if", IFImg2ImgPipeline),
174
175
        ("kandinsky", KandinskyImg2ImgCombinedPipeline),
        ("kandinsky22", KandinskyV22Img2ImgCombinedPipeline),
176
        ("kandinsky3", Kandinsky3Img2ImgPipeline),
YiYi Xu's avatar
YiYi Xu committed
177
        ("stable-diffusion-controlnet", StableDiffusionControlNetImg2ImgPipeline),
178
        ("stable-diffusion-pag", StableDiffusionPAGImg2ImgPipeline),
179
        ("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetImg2ImgPipeline),
180
        ("stable-diffusion-xl-controlnet-union", StableDiffusionXLControlNetUnionImg2ImgPipeline),
YiYi Xu's avatar
YiYi Xu committed
181
        ("stable-diffusion-xl-pag", StableDiffusionXLPAGImg2ImgPipeline),
182
        ("stable-diffusion-xl-controlnet-pag", StableDiffusionXLControlNetPAGImg2ImgPipeline),
183
        ("lcm", LatentConsistencyModelImg2ImgPipeline),
184
        ("flux", FluxImg2ImgPipeline),
185
        ("flux-controlnet", FluxControlNetImg2ImgPipeline),
186
        ("flux-control", FluxControlImg2ImgPipeline),
jlonge4's avatar
jlonge4 committed
187
        ("flux-kontext", FluxKontextPipeline),
YiYi Xu's avatar
YiYi Xu committed
188
189
        ("qwenimage", QwenImageImg2ImgPipeline),
        ("qwenimage-edit", QwenImageEditPipeline),
190
        ("qwenimage-edit-plus", QwenImageEditPlusPipeline),
YiYi Xu's avatar
YiYi Xu committed
191
192
193
194
195
196
197
    ]
)

AUTO_INPAINT_PIPELINES_MAPPING = OrderedDict(
    [
        ("stable-diffusion", StableDiffusionInpaintPipeline),
        ("stable-diffusion-xl", StableDiffusionXLInpaintPipeline),
198
        ("stable-diffusion-3", StableDiffusion3InpaintPipeline),
YiYi Xu's avatar
YiYi Xu committed
199
        ("if", IFInpaintingPipeline),
200
201
202
        ("kandinsky", KandinskyInpaintCombinedPipeline),
        ("kandinsky22", KandinskyV22InpaintCombinedPipeline),
        ("stable-diffusion-controlnet", StableDiffusionControlNetInpaintPipeline),
203
        ("stable-diffusion-controlnet-pag", StableDiffusionControlNetPAGInpaintPipeline),
204
        ("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetInpaintPipeline),
205
        ("stable-diffusion-xl-controlnet-union", StableDiffusionXLControlNetUnionInpaintPipeline),
206
        ("stable-diffusion-3-controlnet", StableDiffusion3ControlNetInpaintingPipeline),
YiYi Xu's avatar
YiYi Xu committed
207
        ("stable-diffusion-xl-pag", StableDiffusionXLPAGInpaintPipeline),
208
        ("flux", FluxInpaintPipeline),
209
        ("flux-controlnet", FluxControlNetInpaintPipeline),
210
        ("flux-control", FluxControlInpaintPipeline),
211
        ("stable-diffusion-pag", StableDiffusionPAGInpaintPipeline),
YiYi Xu's avatar
YiYi Xu committed
212
213
        ("qwenimage", QwenImageInpaintPipeline),
        ("qwenimage-edit", QwenImageEditInpaintPipeline),
214
215
216
217
218
219
220
    ]
)

_AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict(
    [
        ("kandinsky", KandinskyPipeline),
        ("kandinsky22", KandinskyV22Pipeline),
Kashif Rasul's avatar
Kashif Rasul committed
221
        ("wuerstchen", WuerstchenDecoderPipeline),
222
        ("cascade", StableCascadeDecoderPipeline),
223
224
225
226
227
228
229
230
231
232
    ]
)
_AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict(
    [
        ("kandinsky", KandinskyImg2ImgPipeline),
        ("kandinsky22", KandinskyV22Img2ImgPipeline),
    ]
)
_AUTO_INPAINT_DECODER_PIPELINES_MAPPING = OrderedDict(
    [
YiYi Xu's avatar
YiYi Xu committed
233
234
235
236
237
        ("kandinsky", KandinskyInpaintPipeline),
        ("kandinsky22", KandinskyV22InpaintPipeline),
    ]
)

238
if is_sentencepiece_available():
239
    from .kolors import KolorsImg2ImgPipeline, KolorsPipeline
Álvaro Somoza's avatar
Álvaro Somoza committed
240
    from .pag import KolorsPAGPipeline
241
242

    AUTO_TEXT2IMAGE_PIPELINES_MAPPING["kolors"] = KolorsPipeline
Álvaro Somoza's avatar
Álvaro Somoza committed
243
    AUTO_TEXT2IMAGE_PIPELINES_MAPPING["kolors-pag"] = KolorsPAGPipeline
244
    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["kolors"] = KolorsImg2ImgPipeline
245

YiYi Xu's avatar
YiYi Xu committed
246
247
248
249
SUPPORTED_TASKS_MAPPINGS = [
    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
    AUTO_INPAINT_PIPELINES_MAPPING,
250
251
252
    _AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING,
    _AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING,
    _AUTO_INPAINT_DECODER_PIPELINES_MAPPING,
YiYi Xu's avatar
YiYi Xu committed
253
254
255
]


256
257
258
259
260
261
262
263
264
265
266
267
268
269
def _get_connected_pipeline(pipeline_cls):
    # for now connected pipelines can only be loaded from decoder pipelines, such as kandinsky-community/kandinsky-2-2-decoder
    if pipeline_cls in _AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING.values():
        return _get_task_class(
            AUTO_TEXT2IMAGE_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False
        )
    if pipeline_cls in _AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING.values():
        return _get_task_class(
            AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False
        )
    if pipeline_cls in _AUTO_INPAINT_DECODER_PIPELINES_MAPPING.values():
        return _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False)


YiYi Xu's avatar
YiYi Xu committed
270
271
272
273
274
275
def _get_model(pipeline_class_name):
    for task_mapping in SUPPORTED_TASKS_MAPPINGS:
        for model_name, pipeline in task_mapping.items():
            if pipeline.__name__ == pipeline_class_name:
                return model_name

YiYi Xu's avatar
YiYi Xu committed
276

YiYi Xu's avatar
YiYi Xu committed
277
278
def _get_task_class(mapping, pipeline_class_name, throw_error_if_not_exist: bool = True):
    model_name = _get_model(pipeline_class_name)
YiYi Xu's avatar
YiYi Xu committed
279
280
281
282
283

    if model_name is not None:
        task_class = mapping.get(model_name, None)
        if task_class is not None:
            return task_class
284
285
286

    if throw_error_if_not_exist:
        raise ValueError(f"AutoPipeline can't find a pipeline linked to {pipeline_class_name} for {model_name}")
YiYi Xu's avatar
YiYi Xu committed
287
288
289
290
291


class AutoPipelineForText2Image(ConfigMixin):
    r"""

292
293
294
    [`AutoPipelineForText2Image`] is a generic pipeline class that instantiates a text-to-image pipeline class. The
    specific underlying pipeline class is automatically selected from either the
    [`~AutoPipelineForText2Image.from_pretrained`] or [`~AutoPipelineForText2Image.from_pipe`] methods.
YiYi Xu's avatar
YiYi Xu committed
295

296
    This class cannot be instantiated using `__init__()` (throws an error).
YiYi Xu's avatar
YiYi Xu committed
297
298
299
300
301
302
303

    Class attributes:

        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.

    """
304

YiYi Xu's avatar
YiYi Xu committed
305
306
307
308
309
310
311
312
313
314
    config_name = "model_index.json"

    def __init__(self, *args, **kwargs):
        raise EnvironmentError(
            f"{self.__class__.__name__} is designed to be instantiated "
            f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
            f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
        )

    @classmethod
315
    @validate_hf_hub_args
YiYi Xu's avatar
YiYi Xu committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    def from_pretrained(cls, pretrained_model_or_path, **kwargs):
        r"""
        Instantiates a text-to-image Pytorch diffusion pipeline from pretrained pipeline weight.

        The from_pretrained() method takes care of returning the correct pipeline class instance by:
            1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
               config object
            2. Find the text-to-image pipeline linked to the pipeline class using pattern matching on pipeline class
               name.

        If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetPipeline`] object.

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        If you get the error message below, you need to finetune the weights for your downstream task:

        ```
333
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
YiYi Xu's avatar
YiYi Xu committed
334
335
336
337
338
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```

        Parameters:
339
            pretrained_model_or_path (`str` or `os.PathLike`, *optional*):
YiYi Xu's avatar
YiYi Xu committed
340
341
342
343
344
345
346
                Can be either:

                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
347
348
            torch_dtype (`torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype.
YiYi Xu's avatar
YiYi Xu committed
349
350
351
352
353
354
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
355

YiYi Xu's avatar
YiYi Xu committed
356
357
358
359
360
361
362
363
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
364
            token (`str` or *bool*, *optional*):
YiYi Xu's avatar
YiYi Xu committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            custom_revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
            mirror (`str`, *optional*):
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
                same device.

                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
            max_memory (`Dict`, *optional*):
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
            offload_folder (`str` or `os.PathLike`, *optional*):
                The path to offload weights if device_map contains the value `"disk"`.
            offload_state_dict (`bool`, *optional*):
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
            variant (`str`, *optional*):
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.

Steven Liu's avatar
Steven Liu committed
412
413
        > [!TIP] > To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in
        with `hf > auth login`.
YiYi Xu's avatar
YiYi Xu committed
414
415
416
417

        Examples:

        ```py
418
        >>> from diffusers import AutoPipelineForText2Image
YiYi Xu's avatar
YiYi Xu committed
419

420
        >>> pipeline = AutoPipelineForText2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
421
        >>> image = pipeline(prompt).images[0]
YiYi Xu's avatar
YiYi Xu committed
422
423
        ```
        """
424
        cache_dir = kwargs.pop("cache_dir", None)
425
426
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
427
        token = kwargs.pop("token", None)
428
429
430
431
432
433
434
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)

        load_config_kwargs = {
            "cache_dir": cache_dir,
            "force_download": force_download,
            "proxies": proxies,
435
            "token": token,
436
437
438
439
440
            "local_files_only": local_files_only,
            "revision": revision,
        }

        config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
YiYi Xu's avatar
YiYi Xu committed
441
        orig_class_name = config["_class_name"]
442
443
444
445
        if "ControlPipeline" in orig_class_name:
            to_replace = "ControlPipeline"
        else:
            to_replace = "Pipeline"
YiYi Xu's avatar
YiYi Xu committed
446
447

        if "controlnet" in kwargs:
448
            if isinstance(kwargs["controlnet"], ControlNetUnionModel):
449
                orig_class_name = config["_class_name"].replace(to_replace, "ControlNetUnionPipeline")
450
            else:
451
                orig_class_name = config["_class_name"].replace(to_replace, "ControlNetPipeline")
YiYi Xu's avatar
YiYi Xu committed
452
453
454
        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
455
                orig_class_name = orig_class_name.replace(to_replace, "PAGPipeline")
YiYi Xu's avatar
YiYi Xu committed
456
457
458

        text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, orig_class_name)

459
        kwargs = {**load_config_kwargs, **kwargs}
YiYi Xu's avatar
YiYi Xu committed
460
461
462
463
464
465
466
467
468
469
470
        return text_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs)

    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
        Instantiates a text-to-image Pytorch diffusion pipeline from another instantiated diffusion pipeline class.

        The from_pipe() method takes care of returning the correct pipeline class instance by finding the text-to-image
        pipeline linked to the pipeline class using pattern matching on pipeline class name.

        All the modules the pipeline contains will be used to initialize the new pipeline without reallocating
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
471
        additional memory.
YiYi Xu's avatar
YiYi Xu committed
472
473
474
475
476
477
478
479

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pipeline (`DiffusionPipeline`):
                an instantiated `DiffusionPipeline` object

        ```py
480
        >>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
YiYi Xu's avatar
YiYi Xu committed
481
482

        >>> pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
483
        ...     "stable-diffusion-v1-5/stable-diffusion-v1-5", requires_safety_checker=False
YiYi Xu's avatar
YiYi Xu committed
484
485
        ... )

486
487
        >>> pipe_t2i = AutoPipelineForText2Image.from_pipe(pipe_i2i)
        >>> image = pipe_t2i(prompt).images[0]
YiYi Xu's avatar
YiYi Xu committed
488
489
490
491
492
493
494
495
496
        ```
        """

        original_config = dict(pipeline.config)
        original_cls_name = pipeline.__class__.__name__

        # derive the pipeline class to instantiate
        text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, original_cls_name)

497
498
        if "controlnet" in kwargs:
            if kwargs["controlnet"] is not None:
YiYi Xu's avatar
YiYi Xu committed
499
                to_replace = "PAGPipeline" if "PAG" in text_2_image_cls.__name__ else "Pipeline"
500
501
                text_2_image_cls = _get_task_class(
                    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
YiYi Xu's avatar
YiYi Xu committed
502
                    text_2_image_cls.__name__.replace("ControlNet", "").replace(to_replace, "ControlNet" + to_replace),
503
504
505
506
                )
            else:
                text_2_image_cls = _get_task_class(
                    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
YiYi Xu's avatar
YiYi Xu committed
507
508
509
510
511
512
513
514
515
516
517
518
519
520
                    text_2_image_cls.__name__.replace("ControlNet", ""),
                )

        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
                text_2_image_cls = _get_task_class(
                    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
                    text_2_image_cls.__name__.replace("PAG", "").replace("Pipeline", "PAGPipeline"),
                )
            else:
                text_2_image_cls = _get_task_class(
                    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
                    text_2_image_cls.__name__.replace("PAG", ""),
521
522
                )

YiYi Xu's avatar
YiYi Xu committed
523
        # define expected module and optional kwargs given the pipeline signature
524
        expected_modules, optional_kwargs = text_2_image_cls._get_signature_keys(text_2_image_cls)
YiYi Xu's avatar
YiYi Xu committed
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)

        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        original_class_obj = {
            k: pipeline.components[k]
            for k, v in pipeline.components.items()
            if k in expected_modules and k not in passed_class_obj
        }

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k, v in original_config.items()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config that were not expected by original pipeline is stored as private attribute
        # we will pass them as optional arguments if they can be accepted by the pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        text_2_image_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}

        # store unused config as private attribute
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
            for k, v in original_config.items()
            if k not in text_2_image_kwargs
        }

563
564
565
        missing_modules = (
            set(expected_modules) - set(text_2_image_cls._optional_components) - set(text_2_image_kwargs.keys())
        )
YiYi Xu's avatar
YiYi Xu committed
566
567
568

        if len(missing_modules) > 0:
            raise ValueError(
569
                f"Pipeline {text_2_image_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
YiYi Xu's avatar
YiYi Xu committed
570
571
572
573
574
575
576
577
578
579
580
581
            )

        model = text_2_image_cls(**text_2_image_kwargs)
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
        model.register_to_config(**unused_original_config)

        return model


class AutoPipelineForImage2Image(ConfigMixin):
    r"""

582
583
584
    [`AutoPipelineForImage2Image`] is a generic pipeline class that instantiates an image-to-image pipeline class. The
    specific underlying pipeline class is automatically selected from either the
    [`~AutoPipelineForImage2Image.from_pretrained`] or [`~AutoPipelineForImage2Image.from_pipe`] methods.
YiYi Xu's avatar
YiYi Xu committed
585

586
    This class cannot be instantiated using `__init__()` (throws an error).
YiYi Xu's avatar
YiYi Xu committed
587
588
589
590
591
592
593

    Class attributes:

        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.

    """
594

YiYi Xu's avatar
YiYi Xu committed
595
596
597
598
599
600
601
602
603
604
    config_name = "model_index.json"

    def __init__(self, *args, **kwargs):
        raise EnvironmentError(
            f"{self.__class__.__name__} is designed to be instantiated "
            f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
            f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
        )

    @classmethod
605
    @validate_hf_hub_args
YiYi Xu's avatar
YiYi Xu committed
606
607
608
609
610
611
612
613
614
615
    def from_pretrained(cls, pretrained_model_or_path, **kwargs):
        r"""
        Instantiates a image-to-image Pytorch diffusion pipeline from pretrained pipeline weight.

        The from_pretrained() method takes care of returning the correct pipeline class instance by:
            1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
               config object
            2. Find the image-to-image pipeline linked to the pipeline class using pattern matching on pipeline class
               name.

616
617
        If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetImg2ImgPipeline`]
        object.
YiYi Xu's avatar
YiYi Xu committed
618
619
620
621
622
623

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        If you get the error message below, you need to finetune the weights for your downstream task:

        ```
624
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
YiYi Xu's avatar
YiYi Xu committed
625
626
627
628
629
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```

        Parameters:
630
            pretrained_model_or_path (`str` or `os.PathLike`, *optional*):
YiYi Xu's avatar
YiYi Xu committed
631
632
633
634
635
636
637
638
                Can be either:

                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
            torch_dtype (`str` or `torch.dtype`, *optional*):
639
                Override the default `torch.dtype` and load the model with another dtype.
YiYi Xu's avatar
YiYi Xu committed
640
641
642
643
644
645
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
646

YiYi Xu's avatar
YiYi Xu committed
647
648
649
650
651
652
653
654
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
655
            token (`str` or *bool*, *optional*):
YiYi Xu's avatar
YiYi Xu committed
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            custom_revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
            mirror (`str`, *optional*):
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
                same device.

                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
            max_memory (`Dict`, *optional*):
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
            offload_folder (`str` or `os.PathLike`, *optional*):
                The path to offload weights if device_map contains the value `"disk"`.
            offload_state_dict (`bool`, *optional*):
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
            variant (`str`, *optional*):
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.

Steven Liu's avatar
Steven Liu committed
703
704
        > [!TIP] > To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in
        with `hf > auth login`.
YiYi Xu's avatar
YiYi Xu committed
705
706
707
708

        Examples:

        ```py
709
        >>> from diffusers import AutoPipelineForImage2Image
YiYi Xu's avatar
YiYi Xu committed
710

711
        >>> pipeline = AutoPipelineForImage2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
712
        >>> image = pipeline(prompt, image).images[0]
YiYi Xu's avatar
YiYi Xu committed
713
714
        ```
        """
715
        cache_dir = kwargs.pop("cache_dir", None)
716
717
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
718
        token = kwargs.pop("token", None)
719
720
721
722
723
724
725
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)

        load_config_kwargs = {
            "cache_dir": cache_dir,
            "force_download": force_download,
            "proxies": proxies,
726
            "token": token,
727
728
729
730
731
            "local_files_only": local_files_only,
            "revision": revision,
        }

        config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
YiYi Xu's avatar
YiYi Xu committed
732
733
        orig_class_name = config["_class_name"]

734
735
        # the `orig_class_name` can be:
        # `- *Pipeline` (for regular text-to-image checkpoint)
736
        #  - `*ControlPipeline` (for Flux tools specific checkpoint)
737
        # `- *Img2ImgPipeline` (for refiner checkpoint)
738
739
740
741
742
743
        if "Img2Img" in orig_class_name:
            to_replace = "Img2ImgPipeline"
        elif "ControlPipeline" in orig_class_name:
            to_replace = "ControlPipeline"
        else:
            to_replace = "Pipeline"
744

YiYi Xu's avatar
YiYi Xu committed
745
        if "controlnet" in kwargs:
746
747
748
749
            if isinstance(kwargs["controlnet"], ControlNetUnionModel):
                orig_class_name = orig_class_name.replace(to_replace, "ControlNetUnion" + to_replace)
            else:
                orig_class_name = orig_class_name.replace(to_replace, "ControlNet" + to_replace)
YiYi Xu's avatar
YiYi Xu committed
750
751
752
        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
753
                orig_class_name = orig_class_name.replace(to_replace, "PAG" + to_replace)
YiYi Xu's avatar
YiYi Xu committed
754

755
756
757
        if to_replace == "ControlPipeline":
            orig_class_name = orig_class_name.replace(to_replace, "ControlImg2ImgPipeline")

YiYi Xu's avatar
YiYi Xu committed
758
759
        image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, orig_class_name)

760
        kwargs = {**load_config_kwargs, **kwargs}
YiYi Xu's avatar
YiYi Xu committed
761
762
763
764
765
766
767
768
769
770
771
        return image_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs)

    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
        Instantiates a image-to-image Pytorch diffusion pipeline from another instantiated diffusion pipeline class.

        The from_pipe() method takes care of returning the correct pipeline class instance by finding the
        image-to-image pipeline linked to the pipeline class using pattern matching on pipeline class name.

        All the modules the pipeline contains will be used to initialize the new pipeline without reallocating
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
772
        additional memory.
YiYi Xu's avatar
YiYi Xu committed
773
774
775
776
777
778
779
780
781
782

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pipeline (`DiffusionPipeline`):
                an instantiated `DiffusionPipeline` object

        Examples:

        ```py
783
        >>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
YiYi Xu's avatar
YiYi Xu committed
784
785

        >>> pipe_t2i = AutoPipelineForText2Image.from_pretrained(
786
        ...     "stable-diffusion-v1-5/stable-diffusion-v1-5", requires_safety_checker=False
YiYi Xu's avatar
YiYi Xu committed
787
788
        ... )

789
790
        >>> pipe_i2i = AutoPipelineForImage2Image.from_pipe(pipe_t2i)
        >>> image = pipe_i2i(prompt, image).images[0]
YiYi Xu's avatar
YiYi Xu committed
791
792
793
794
795
796
797
798
799
        ```
        """

        original_config = dict(pipeline.config)
        original_cls_name = pipeline.__class__.__name__

        # derive the pipeline class to instantiate
        image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, original_cls_name)

800
801
        if "controlnet" in kwargs:
            if kwargs["controlnet"] is not None:
YiYi Xu's avatar
YiYi Xu committed
802
803
804
                to_replace = "Img2ImgPipeline"
                if "PAG" in image_2_image_cls.__name__:
                    to_replace = "PAG" + to_replace
805
806
                image_2_image_cls = _get_task_class(
                    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
807
                    image_2_image_cls.__name__.replace("ControlNet", "").replace(
YiYi Xu's avatar
YiYi Xu committed
808
                        to_replace, "ControlNet" + to_replace
809
                    ),
810
811
812
813
                )
            else:
                image_2_image_cls = _get_task_class(
                    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
YiYi Xu's avatar
YiYi Xu committed
814
815
816
817
818
819
820
821
822
823
824
825
826
827
                    image_2_image_cls.__name__.replace("ControlNet", ""),
                )

        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
                image_2_image_cls = _get_task_class(
                    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
                    image_2_image_cls.__name__.replace("PAG", "").replace("Img2ImgPipeline", "PAGImg2ImgPipeline"),
                )
            else:
                image_2_image_cls = _get_task_class(
                    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
                    image_2_image_cls.__name__.replace("PAG", ""),
828
829
                )

YiYi Xu's avatar
YiYi Xu committed
830
        # define expected module and optional kwargs given the pipeline signature
831
        expected_modules, optional_kwargs = image_2_image_cls._get_signature_keys(image_2_image_cls)
YiYi Xu's avatar
YiYi Xu committed
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)

        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        original_class_obj = {
            k: pipeline.components[k]
            for k, v in pipeline.components.items()
            if k in expected_modules and k not in passed_class_obj
        }

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k, v in original_config.items()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config attribute that were not expected by original pipeline is stored as its private attribute
        # we will pass them as optional arguments if they can be accepted by the pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        image_2_image_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}

        # store unused config as private attribute
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
            for k, v in original_config.items()
            if k not in image_2_image_kwargs
        }

870
871
872
        missing_modules = (
            set(expected_modules) - set(image_2_image_cls._optional_components) - set(image_2_image_kwargs.keys())
        )
YiYi Xu's avatar
YiYi Xu committed
873
874
875

        if len(missing_modules) > 0:
            raise ValueError(
876
                f"Pipeline {image_2_image_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
YiYi Xu's avatar
YiYi Xu committed
877
878
879
880
881
882
883
884
885
886
887
888
            )

        model = image_2_image_cls(**image_2_image_kwargs)
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
        model.register_to_config(**unused_original_config)

        return model


class AutoPipelineForInpainting(ConfigMixin):
    r"""

889
890
891
    [`AutoPipelineForInpainting`] is a generic pipeline class that instantiates an inpainting pipeline class. The
    specific underlying pipeline class is automatically selected from either the
    [`~AutoPipelineForInpainting.from_pretrained`] or [`~AutoPipelineForInpainting.from_pipe`] methods.
YiYi Xu's avatar
YiYi Xu committed
892

893
    This class cannot be instantiated using `__init__()` (throws an error).
YiYi Xu's avatar
YiYi Xu committed
894
895
896
897
898
899
900

    Class attributes:

        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.

    """
901

YiYi Xu's avatar
YiYi Xu committed
902
903
904
905
906
907
908
909
910
911
    config_name = "model_index.json"

    def __init__(self, *args, **kwargs):
        raise EnvironmentError(
            f"{self.__class__.__name__} is designed to be instantiated "
            f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
            f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
        )

    @classmethod
912
    @validate_hf_hub_args
YiYi Xu's avatar
YiYi Xu committed
913
914
915
916
917
918
919
920
921
    def from_pretrained(cls, pretrained_model_or_path, **kwargs):
        r"""
        Instantiates a inpainting Pytorch diffusion pipeline from pretrained pipeline weight.

        The from_pretrained() method takes care of returning the correct pipeline class instance by:
            1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
               config object
            2. Find the inpainting pipeline linked to the pipeline class using pattern matching on pipeline class name.

922
923
        If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetInpaintPipeline`]
        object.
YiYi Xu's avatar
YiYi Xu committed
924
925
926
927
928
929

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        If you get the error message below, you need to finetune the weights for your downstream task:

        ```
930
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
YiYi Xu's avatar
YiYi Xu committed
931
932
933
934
935
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```

        Parameters:
936
            pretrained_model_or_path (`str` or `os.PathLike`, *optional*):
YiYi Xu's avatar
YiYi Xu committed
937
938
939
940
941
942
943
944
                Can be either:

                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
            torch_dtype (`str` or `torch.dtype`, *optional*):
945
                Override the default `torch.dtype` and load the model with another dtype.
YiYi Xu's avatar
YiYi Xu committed
946
947
948
949
950
951
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
952

YiYi Xu's avatar
YiYi Xu committed
953
954
955
956
957
958
959
960
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
961
            token (`str` or *bool*, *optional*):
YiYi Xu's avatar
YiYi Xu committed
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            custom_revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
            mirror (`str`, *optional*):
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
                same device.

                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
            max_memory (`Dict`, *optional*):
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
            offload_folder (`str` or `os.PathLike`, *optional*):
                The path to offload weights if device_map contains the value `"disk"`.
            offload_state_dict (`bool`, *optional*):
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
            variant (`str`, *optional*):
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.

Steven Liu's avatar
Steven Liu committed
1009
1010
        > [!TIP] > To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in
        with `hf > auth login`.
YiYi Xu's avatar
YiYi Xu committed
1011
1012
1013
1014

        Examples:

        ```py
1015
        >>> from diffusers import AutoPipelineForInpainting
YiYi Xu's avatar
YiYi Xu committed
1016

1017
        >>> pipeline = AutoPipelineForInpainting.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
1018
        >>> image = pipeline(prompt, image=init_image, mask_image=mask_image).images[0]
YiYi Xu's avatar
YiYi Xu committed
1019
1020
        ```
        """
1021
        cache_dir = kwargs.pop("cache_dir", None)
1022
1023
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
1024
        token = kwargs.pop("token", None)
1025
1026
1027
1028
1029
1030
1031
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)

        load_config_kwargs = {
            "cache_dir": cache_dir,
            "force_download": force_download,
            "proxies": proxies,
1032
            "token": token,
1033
1034
1035
1036
1037
            "local_files_only": local_files_only,
            "revision": revision,
        }

        config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
YiYi Xu's avatar
YiYi Xu committed
1038
1039
        orig_class_name = config["_class_name"]

1040
1041
        # The `orig_class_name`` can be:
        # `- *InpaintPipeline` (for inpaint-specific checkpoint)
1042
        #  - `*ControlPipeline` (for Flux tools specific checkpoint)
1043
        #  - or *Pipeline (for regular text-to-image checkpoint)
1044
1045
1046
1047
1048
1049
        if "Inpaint" in orig_class_name:
            to_replace = "InpaintPipeline"
        elif "ControlPipeline" in orig_class_name:
            to_replace = "ControlPipeline"
        else:
            to_replace = "Pipeline"
1050

YiYi Xu's avatar
YiYi Xu committed
1051
        if "controlnet" in kwargs:
1052
1053
1054
1055
            if isinstance(kwargs["controlnet"], ControlNetUnionModel):
                orig_class_name = orig_class_name.replace(to_replace, "ControlNetUnion" + to_replace)
            else:
                orig_class_name = orig_class_name.replace(to_replace, "ControlNet" + to_replace)
YiYi Xu's avatar
YiYi Xu committed
1056
1057
1058
        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
1059
                orig_class_name = orig_class_name.replace(to_replace, "PAG" + to_replace)
1060
1061
        if to_replace == "ControlPipeline":
            orig_class_name = orig_class_name.replace(to_replace, "ControlInpaintPipeline")
YiYi Xu's avatar
YiYi Xu committed
1062
1063
        inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, orig_class_name)

1064
        kwargs = {**load_config_kwargs, **kwargs}
YiYi Xu's avatar
YiYi Xu committed
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
        return inpainting_cls.from_pretrained(pretrained_model_or_path, **kwargs)

    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
        Instantiates a inpainting Pytorch diffusion pipeline from another instantiated diffusion pipeline class.

        The from_pipe() method takes care of returning the correct pipeline class instance by finding the inpainting
        pipeline linked to the pipeline class using pattern matching on pipeline class name.

        All the modules the pipeline class contain will be used to initialize the new pipeline without reallocating
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1076
        additional memory.
YiYi Xu's avatar
YiYi Xu committed
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

        The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pipeline (`DiffusionPipeline`):
                an instantiated `DiffusionPipeline` object

        Examples:

        ```py
1087
        >>> from diffusers import AutoPipelineForText2Image, AutoPipelineForInpainting
YiYi Xu's avatar
YiYi Xu committed
1088
1089
1090
1091
1092
1093

        >>> pipe_t2i = AutoPipelineForText2Image.from_pretrained(
        ...     "DeepFloyd/IF-I-XL-v1.0", requires_safety_checker=False
        ... )

        >>> pipe_inpaint = AutoPipelineForInpainting.from_pipe(pipe_t2i)
1094
        >>> image = pipe_inpaint(prompt, image=init_image, mask_image=mask_image).images[0]
YiYi Xu's avatar
YiYi Xu committed
1095
1096
1097
1098
1099
1100
1101
1102
        ```
        """
        original_config = dict(pipeline.config)
        original_cls_name = pipeline.__class__.__name__

        # derive the pipeline class to instantiate
        inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, original_cls_name)

1103
1104
1105
1106
        if "controlnet" in kwargs:
            if kwargs["controlnet"] is not None:
                inpainting_cls = _get_task_class(
                    AUTO_INPAINT_PIPELINES_MAPPING,
1107
1108
1109
                    inpainting_cls.__name__.replace("ControlNet", "").replace(
                        "InpaintPipeline", "ControlNetInpaintPipeline"
                    ),
1110
1111
1112
1113
1114
1115
1116
                )
            else:
                inpainting_cls = _get_task_class(
                    AUTO_INPAINT_PIPELINES_MAPPING,
                    inpainting_cls.__name__.replace("ControlNetInpaintPipeline", "InpaintPipeline"),
                )

YiYi Xu's avatar
YiYi Xu committed
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
        if "enable_pag" in kwargs:
            enable_pag = kwargs.pop("enable_pag")
            if enable_pag:
                inpainting_cls = _get_task_class(
                    AUTO_INPAINT_PIPELINES_MAPPING,
                    inpainting_cls.__name__.replace("PAG", "").replace("InpaintPipeline", "PAGInpaintPipeline"),
                )
            else:
                inpainting_cls = _get_task_class(
                    AUTO_INPAINT_PIPELINES_MAPPING,
                    inpainting_cls.__name__.replace("PAGInpaintPipeline", "InpaintPipeline"),
                )

YiYi Xu's avatar
YiYi Xu committed
1130
        # define expected module and optional kwargs given the pipeline signature
1131
        expected_modules, optional_kwargs = inpainting_cls._get_signature_keys(inpainting_cls)
YiYi Xu's avatar
YiYi Xu committed
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)

        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        original_class_obj = {
            k: pipeline.components[k]
            for k, v in pipeline.components.items()
            if k in expected_modules and k not in passed_class_obj
        }

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k, v in original_config.items()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config that were not expected by original pipeline is stored as private attribute
        # we will pass them as optional arguments if they can be accepted by the pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        inpainting_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}

        # store unused config as private attribute
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
            for k, v in original_config.items()
            if k not in inpainting_kwargs
        }

1170
1171
1172
        missing_modules = (
            set(expected_modules) - set(inpainting_cls._optional_components) - set(inpainting_kwargs.keys())
        )
YiYi Xu's avatar
YiYi Xu committed
1173
1174
1175

        if len(missing_modules) > 0:
            raise ValueError(
1176
                f"Pipeline {inpainting_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
YiYi Xu's avatar
YiYi Xu committed
1177
1178
1179
1180
1181
1182
1183
            )

        model = inpainting_cls(**inpainting_kwargs)
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
        model.register_to_config(**unused_original_config)

        return model