lora_pipeline.py 204 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aryan's avatar
Aryan committed
14

15
16
17
18
import os
from typing import Callable, Dict, List, Optional, Union

import torch
19
from huggingface_hub.utils import validate_hf_hub_args
20
21
22

from ..utils import (
    USE_PEFT_BACKEND,
23
    deprecate,
24
    get_submodule_by_name,
hlky's avatar
hlky committed
25
26
    is_bitsandbytes_available,
    is_gguf_available,
27
    is_peft_available,
28
    is_peft_version,
29
    is_torch_version,
30
    is_transformers_available,
31
    is_transformers_version,
32
33
    logging,
)
34
35
36
37
38
39
from .lora_base import (  # noqa
    LORA_WEIGHT_NAME,
    LORA_WEIGHT_NAME_SAFE,
    LoraBaseMixin,
    _fetch_state_dict,
    _load_lora_into_text_encoder,
40
    _pack_dict_with_prefix,
41
)
42
from .lora_conversion_utils import (
Aryan's avatar
Aryan committed
43
    _convert_bfl_flux_control_lora_to_diffusers,
44
    _convert_fal_kontext_lora_to_diffusers,
45
    _convert_hunyuan_video_lora_to_diffusers,
46
    _convert_kohya_flux_lora_to_diffusers,
47
    _convert_musubi_wan_lora_to_diffusers,
48
    _convert_non_diffusers_hidream_lora_to_diffusers,
49
    _convert_non_diffusers_lora_to_diffusers,
50
    _convert_non_diffusers_ltxv_lora_to_diffusers,
51
    _convert_non_diffusers_lumina2_lora_to_diffusers,
52
    _convert_non_diffusers_qwen_lora_to_diffusers,
53
    _convert_non_diffusers_wan_lora_to_diffusers,
54
55
56
    _convert_xlabs_flux_lora_to_diffusers,
    _maybe_map_sgm_blocks_to_diffusers,
)
57
58


59
60
61
62
63
64
65
66
67
68
69
_LOW_CPU_MEM_USAGE_DEFAULT_LORA = False
if is_torch_version(">=", "1.9.0"):
    if (
        is_peft_available()
        and is_peft_version(">=", "0.13.1")
        and is_transformers_available()
        and is_transformers_version(">", "4.45.2")
    ):
        _LOW_CPU_MEM_USAGE_DEFAULT_LORA = True


70
71
72
73
logger = logging.get_logger(__name__)

TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"
Will Berman's avatar
Will Berman committed
74
TRANSFORMER_NAME = "transformer"
75

Aryan's avatar
Aryan committed
76
77
_MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX = {"x_embedder": "in_channels"}

78

hlky's avatar
hlky committed
79
80
81
82
83
84
85
86
def _maybe_dequantize_weight_for_expanded_lora(model, module):
    if is_bitsandbytes_available():
        from ..quantizers.bitsandbytes import dequantize_bnb_weight

    if is_gguf_available():
        from ..quantizers.gguf.utils import dequantize_gguf_tensor

    is_bnb_4bit_quantized = module.weight.__class__.__name__ == "Params4bit"
87
    is_bnb_8bit_quantized = module.weight.__class__.__name__ == "Int8Params"
hlky's avatar
hlky committed
88
89
90
91
92
93
    is_gguf_quantized = module.weight.__class__.__name__ == "GGUFParameter"

    if is_bnb_4bit_quantized and not is_bitsandbytes_available():
        raise ValueError(
            "The checkpoint seems to have been quantized with `bitsandbytes` (4bits). Install `bitsandbytes` to load quantized checkpoints."
        )
94
95
96
97
    if is_bnb_8bit_quantized and not is_bitsandbytes_available():
        raise ValueError(
            "The checkpoint seems to have been quantized with `bitsandbytes` (8bits). Install `bitsandbytes` to load quantized checkpoints."
        )
hlky's avatar
hlky committed
98
99
100
101
102
103
    if is_gguf_quantized and not is_gguf_available():
        raise ValueError(
            "The checkpoint seems to have been quantized with `gguf`. Install `gguf` to load quantized checkpoints."
        )

    weight_on_cpu = False
104
    if module.weight.device.type == "cpu":
hlky's avatar
hlky committed
105
106
        weight_on_cpu = True

107
    device = torch.accelerator.current_accelerator().type if hasattr(torch, "accelerator") else "cuda"
108
    if is_bnb_4bit_quantized or is_bnb_8bit_quantized:
hlky's avatar
hlky committed
109
        module_weight = dequantize_bnb_weight(
110
            module.weight.to(device) if weight_on_cpu else module.weight,
111
            state=module.weight.quant_state if is_bnb_4bit_quantized else module.state,
hlky's avatar
hlky committed
112
113
114
115
            dtype=model.dtype,
        ).data
    elif is_gguf_quantized:
        module_weight = dequantize_gguf_tensor(
116
            module.weight.to(device) if weight_on_cpu else module.weight,
hlky's avatar
hlky committed
117
118
119
120
121
122
123
124
125
126
127
        )
        module_weight = module_weight.to(model.dtype)
    else:
        module_weight = module.weight.data

    if weight_on_cpu:
        module_weight = module_weight.cpu()

    return module_weight


128
class StableDiffusionLoraLoaderMixin(LoraBaseMixin):
129
    r"""
130
    Load LoRA layers into Stable Diffusion [`UNet2DConditionModel`] and
131
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
132
    """
133

134
    _lora_loadable_modules = ["unet", "text_encoder"]
135
    unet_name = UNET_NAME
136
    text_encoder_name = TEXT_ENCODER_NAME
137
138

    def load_lora_weights(
139
140
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
141
        adapter_name: Optional[str] = None,
142
143
        hotswap: bool = False,
        **kwargs,
144
    ):
145
        """Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
146
147
148
149
        `self.text_encoder`.

        All kwargs are forwarded to `self.lora_state_dict`.

150
151
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
        loaded.
152

153
154
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is
        loaded into `self.unet`.
155

156
157
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state
        dict is loaded into `self.text_encoder`.
158
159
160

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
161
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
162
            adapter_name (`str`, *optional*):
163
164
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
165
166
167
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
168
            hotswap (`bool`, *optional*):
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
                Defaults to `False`. Whether to substitute an existing (LoRA) adapter with the newly loaded adapter
                in-place. This means that, instead of loading an additional adapter, this will take the existing
                adapter weights and replace them with the weights of the new adapter. This can be faster and more
                memory efficient. However, the main advantage of hotswapping is that when the model is compiled with
                torch.compile, loading the new adapter does not require recompilation of the model. When using
                hotswapping, the passed `adapter_name` should be the name of an already loaded adapter.

                If the new adapter and the old adapter have different ranks and/or LoRA alphas (i.e. scaling), you need
                to call an additional method before loading the adapter:

                ```py
                pipeline = ...  # load diffusers pipeline
                max_rank = ...  # the highest rank among all LoRAs that you want to load
                # call *before* compiling and loading the LoRA adapter
                pipeline.enable_lora_hotswap(target_rank=max_rank)
                pipeline.load_lora_weights(file_name)
                # optionally compile the model now
                ```

                Note that hotswapping adapters of the text encoder is not yet supported. There are some further
                limitations to this technique, which are documented here:
                https://huggingface.co/docs/peft/main/en/package_reference/hotswap
191
192
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
193
        """
194
195
196
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

197
198
199
200
201
202
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

203
204
205
206
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

207
        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
208
209
        kwargs["return_lora_metadata"] = True
        state_dict, network_alphas, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
210

Sayak Paul's avatar
Sayak Paul committed
211
        is_correct_format = all("lora" in key for key in state_dict.keys())
212
213
214
215
216
217
218
219
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_unet(
            state_dict,
            network_alphas=network_alphas,
            unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet,
            adapter_name=adapter_name,
220
            metadata=metadata,
221
            _pipeline=self,
222
            low_cpu_mem_usage=low_cpu_mem_usage,
223
            hotswap=hotswap,
224
225
226
227
228
229
230
231
232
233
        )
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=network_alphas,
            text_encoder=getattr(self, self.text_encoder_name)
            if not hasattr(self, "text_encoder")
            else self.text_encoder,
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
            _pipeline=self,
234
            metadata=metadata,
235
            low_cpu_mem_usage=low_cpu_mem_usage,
236
            hotswap=hotswap,
237
238
239
        )

    @classmethod
240
    @validate_hf_hub_args
241
242
243
244
245
246
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
247
248
249
250
251
252
253
254
255
        Return state dict for lora weights and the network alphas.

        <Tip warning={true}>

        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>
256
257
258
259
260
261
262

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
263
264
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
265
266
267
268
269
270
271
272
273
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
274

275
276
277
278
279
280
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
281
            token (`str` or *bool*, *optional*):
282
283
284
285
286
287
288
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
289
290
            weight_name (`str`, *optional*, defaults to None):
                Name of the serialized state dict file.
291
292
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
293
294
295
        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
296
        cache_dir = kwargs.pop("cache_dir", None)
297
298
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
299
300
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
301
302
303
304
305
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        unet_config = kwargs.pop("unet_config", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
306
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
307
308
309
310
311
312

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

313
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
314

315
        state_dict, metadata = _fetch_state_dict(
316
317
318
319
320
321
322
323
324
325
326
327
328
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
Sayak Paul's avatar
Sayak Paul committed
329
330
331
332
333
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

        network_alphas = None
        # TODO: replace it with a method from `state_dict_utils`
        if all(
            (
                k.startswith("lora_te_")
                or k.startswith("lora_unet_")
                or k.startswith("lora_te1_")
                or k.startswith("lora_te2_")
            )
            for k in state_dict.keys()
        ):
            # Map SDXL blocks correctly.
            if unet_config is not None:
                # use unet config to remap block numbers
349
                state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
350
            state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict)
351

352
353
        out = (state_dict, network_alphas, metadata) if return_lora_metadata else (state_dict, network_alphas)
        return out
354
355

    @classmethod
356
    def load_lora_into_unet(
357
358
359
360
361
362
363
364
        cls,
        state_dict,
        network_alphas,
        unet,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
365
        metadata=None,
366
    ):
367
        """
368
        This will load the LoRA layers specified in `state_dict` into `unet`.
369
370
371

        Parameters:
            state_dict (`dict`):
372
373
374
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
375
            network_alphas (`Dict[str, float]`):
376
377
378
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
379
380
381
            unet (`UNet2DConditionModel`):
                The UNet model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
382
383
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
384
385
386
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading only loading the pretrained LoRA weights and not initializing the random
                weights.
387
388
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
389
390
391
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
392
        """
393
394
395
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

396
397
398
399
400
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

401
402
403
        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as
        # their prefixes.
404
405
406
407
408
409
        logger.info(f"Loading {cls.unet_name}.")
        unet.load_lora_adapter(
            state_dict,
            prefix=cls.unet_name,
            network_alphas=network_alphas,
            adapter_name=adapter_name,
410
            metadata=metadata,
411
412
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
413
            hotswap=hotswap,
414
        )
415

416
417
418
419
420
421
422
423
424
425
    @classmethod
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
426
        low_cpu_mem_usage=False,
427
        hotswap: bool = False,
428
        metadata=None,
429
430
431
432
433
434
435
436
437
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
438
439
440
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
441
442
443
444
445
446
447
448
449
450
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
451
452
453
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
454
455
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
456
457
458
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
459
        """
460
461
462
463
464
465
466
467
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
468
            metadata=metadata,
469
470
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
471
            hotswap=hotswap,
472
        )
473

474
475
476
477
478
479
480
481
482
483
    @classmethod
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
484
485
        unet_lora_adapter_metadata=None,
        text_encoder_lora_adapter_metadata=None,
486
487
    ):
        r"""
488
        Save the LoRA parameters corresponding to the UNet and text encoder.
489
490
491

        Arguments:
            save_directory (`str` or `os.PathLike`):
492
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
493
494
495
496
497
498
499
500
501
502
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
503
504
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
505
506
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
507
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
508
509
510
511
            unet_lora_adapter_metadata:
                LoRA adapter metadata associated with the unet to be serialized with the state dict.
            text_encoder_lora_adapter_metadata:
                LoRA adapter metadata associated with the text encoder to be serialized with the state dict.
512
        """
513
514
        lora_layers = {}
        lora_metadata = {}
515

516
        if unet_lora_layers:
517
518
            lora_layers[cls.unet_name] = unet_lora_layers
            lora_metadata[cls.unet_name] = unet_lora_adapter_metadata
519

520
        if text_encoder_lora_layers:
521
522
            lora_layers[cls.text_encoder_name] = text_encoder_lora_layers
            lora_metadata[cls.text_encoder_name] = text_encoder_lora_adapter_metadata
Will Berman's avatar
Will Berman committed
523

524
525
        if not lora_layers:
            raise ValueError("You must pass at least one of `unet_lora_layers` or `text_encoder_lora_layers`.")
526

527
        cls._save_lora_weights(
528
            save_directory=save_directory,
529
530
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
531
532
533
534
535
536
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

537
538
    def fuse_lora(
        self,
539
        components: List[str] = ["unet", "text_encoder"],
540
541
542
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
543
        **kwargs,
544
545
546
547
548
549
550
551
552
553
554
    ):
        r"""
        Fuses the LoRA parameters into the original parameters of the corresponding blocks.

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
555
            components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
            lora_scale (`float`, defaults to 1.0):
                Controls how much to influence the outputs with the LoRA parameters.
            safe_fusing (`bool`, defaults to `False`):
                Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
            adapter_names (`List[str]`, *optional*):
                Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipeline = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.fuse_lora(lora_scale=0.7)
        ```
        """
576
        super().fuse_lora(
577
578
579
580
581
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
582
        )
583

584
    def unfuse_lora(self, components: List[str] = ["unet", "text_encoder"], **kwargs):
585
586
        r"""
        Reverses the effect of
587
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
588
589
590
591
592
593
594
595

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
596
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
597
598
599
600
601
            unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
            unfuse_text_encoder (`bool`, defaults to `True`):
                Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
                LoRA parameters then it won't have any effect.
        """
602
        super().unfuse_lora(components=components, **kwargs)
603
604


605
606
607
608
609
610
class StableDiffusionXLLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into Stable Diffusion XL [`UNet2DConditionModel`],
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and
    [`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection).
    """
611

612
613
614
    _lora_loadable_modules = ["unet", "text_encoder", "text_encoder_2"]
    unet_name = UNET_NAME
    text_encoder_name = TEXT_ENCODER_NAME
615

616
617
618
619
    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
620
        hotswap: bool = False,
621
622
623
        **kwargs,
    ):
        """
624
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
625
        """
626
627
628
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

629
630
631
632
633
634
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

635
636
637
638
        # We could have accessed the unet config from `lora_state_dict()` too. We pass
        # it here explicitly to be able to tell that it's coming from an SDXL
        # pipeline.

639
640
641
642
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

643
        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
644
645
        kwargs["return_lora_metadata"] = True
        state_dict, network_alphas, metadata = self.lora_state_dict(
646
647
648
649
            pretrained_model_name_or_path_or_dict,
            unet_config=self.unet.config,
            **kwargs,
        )
Sayak Paul's avatar
Sayak Paul committed
650
651

        is_correct_format = all("lora" in key for key in state_dict.keys())
652
653
654
655
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_unet(
656
657
658
659
            state_dict,
            network_alphas=network_alphas,
            unet=self.unet,
            adapter_name=adapter_name,
660
            metadata=metadata,
661
662
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
663
            hotswap=hotswap,
664
        )
665
666
667
668
669
670
671
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=network_alphas,
            text_encoder=self.text_encoder,
            prefix=self.text_encoder_name,
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
672
            metadata=metadata,
673
674
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
675
            hotswap=hotswap,
676
677
678
679
680
681
682
683
        )
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=network_alphas,
            text_encoder=self.text_encoder_2,
            prefix=f"{self.text_encoder_name}_2",
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
684
            metadata=metadata,
685
686
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
687
            hotswap=hotswap,
688
        )
689
690

    @classmethod
691
692
693
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.lora_state_dict
    def lora_state_dict(
694
695
696
697
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
698
        r"""
699
        Return state dict for lora weights and the network alphas.
700
701

        <Tip warning={true}>
Dhruv Nair's avatar
Dhruv Nair committed
702

703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
        We support loading A1111 formatted LoRA checkpoints in a limited capacity.

        This function is experimental and might change in the future.

        </Tip>

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.

            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
741
742
            weight_name (`str`, *optional*, defaults to None):
                Name of the serialized state dict file.
743
744
            return_lora_metadata (`bool`, *optional*, defaults to False):
                When enabled, additionally return the LoRA adapter metadata, typically found in the state dict.
745
746
747
748
749
750
751
752
753
754
755
        """
        # Load the main state dict first which has the LoRA layers for either of
        # UNet and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
756
        unet_config = kwargs.pop("unet_config", None)
757
        use_safetensors = kwargs.pop("use_safetensors", None)
758
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Dhruv Nair's avatar
Dhruv Nair committed
759

760
761
762
763
764
        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

765
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
766

767
        state_dict, metadata = _fetch_state_dict(
768
769
770
771
772
773
774
775
776
777
778
779
780
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
Sayak Paul's avatar
Sayak Paul committed
781
782
783
784
785
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803

        network_alphas = None
        # TODO: replace it with a method from `state_dict_utils`
        if all(
            (
                k.startswith("lora_te_")
                or k.startswith("lora_unet_")
                or k.startswith("lora_te1_")
                or k.startswith("lora_te2_")
            )
            for k in state_dict.keys()
        ):
            # Map SDXL blocks correctly.
            if unet_config is not None:
                # use unet config to remap block numbers
                state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
            state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict)

804
805
        out = (state_dict, network_alphas, metadata) if return_lora_metadata else (state_dict, network_alphas)
        return out
806
807
808

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_unet
809
    def load_lora_into_unet(
810
811
812
813
814
815
816
817
        cls,
        state_dict,
        network_alphas,
        unet,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
818
        metadata=None,
819
    ):
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
        """
        This will load the LoRA layers specified in `state_dict` into `unet`.

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The keys can either be indexed directly
                into the unet or prefixed with an additional `unet` which can be used to distinguish between text
                encoder lora layers.
            network_alphas (`Dict[str, float]`):
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
            unet (`UNet2DConditionModel`):
                The UNet model to load the LoRA layers into.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
837
838
839
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading only loading the pretrained LoRA weights and not initializing the random
                weights.
840
841
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
842
843
844
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
845
846
847
848
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

849
850
851
852
853
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

854
855
856
        # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
        # then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as
        # their prefixes.
857
858
859
860
861
862
        logger.info(f"Loading {cls.unet_name}.")
        unet.load_lora_adapter(
            state_dict,
            prefix=cls.unet_name,
            network_alphas=network_alphas,
            adapter_name=adapter_name,
863
            metadata=metadata,
864
865
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
866
            hotswap=hotswap,
867
        )
868
869
870
871
872
873
874
875
876
877
878
879

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
880
        low_cpu_mem_usage=False,
881
        hotswap: bool = False,
882
        metadata=None,
883
884
885
886
887
888
889
890
891
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
892
893
894
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
895
896
897
898
899
900
901
902
903
904
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
905
906
907
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
908
909
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
910
911
912
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
913
        """
914
915
916
917
918
919
920
921
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
922
            metadata=metadata,
923
924
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
925
            hotswap=hotswap,
926
        )
927
928
929
930
931
932
933
934
935
936
937
938

    @classmethod
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
939
940
941
        unet_lora_adapter_metadata=None,
        text_encoder_lora_adapter_metadata=None,
        text_encoder_2_lora_adapter_metadata=None,
942
943
    ):
        r"""
944
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
945
        """
946
947
        lora_layers = {}
        lora_metadata = {}
948
949

        if unet_lora_layers:
950
951
            lora_layers[cls.unet_name] = unet_lora_layers
            lora_metadata[cls.unet_name] = unet_lora_adapter_metadata
952
953

        if text_encoder_lora_layers:
954
955
            lora_layers["text_encoder"] = text_encoder_lora_layers
            lora_metadata["text_encoder"] = text_encoder_lora_adapter_metadata
956
957

        if text_encoder_2_lora_layers:
958
959
            lora_layers["text_encoder_2"] = text_encoder_2_lora_layers
            lora_metadata["text_encoder_2"] = text_encoder_2_lora_adapter_metadata
960

961
962
963
        if not lora_layers:
            raise ValueError(
                "You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers`, or `text_encoder_2_lora_layers`."
964
965
            )

966
        cls._save_lora_weights(
967
            save_directory=save_directory,
968
969
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def fuse_lora(
        self,
        components: List[str] = ["unet", "text_encoder", "text_encoder_2"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
985
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
986
987
        """
        super().fuse_lora(
988
989
990
991
992
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
993
994
995
996
        )

    def unfuse_lora(self, components: List[str] = ["unet", "text_encoder", "text_encoder_2"], **kwargs):
        r"""
997
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
998
        """
999
        super().unfuse_lora(components=components, **kwargs)
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022


class SD3LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`SD3Transformer2DModel`],
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and
    [`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection).

    Specific to [`StableDiffusion3Pipeline`].
    """

    _lora_loadable_modules = ["transformer", "text_encoder", "text_encoder_2"]
    transformer_name = TRANSFORMER_NAME
    text_encoder_name = TEXT_ENCODER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
1023
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
1036
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
1037
1038
1039
1040
1041
1042

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

1043
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
1044

1045
        state_dict, metadata = _fetch_state_dict(
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

Sayak Paul's avatar
Sayak Paul committed
1060
1061
1062
1063
1064
1065
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

1066
1067
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
1068
1069

    def load_lora_weights(
1070
1071
1072
1073
1074
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name=None,
        hotswap: bool = False,
        **kwargs,
1075
1076
    ):
        """
1077
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
1078
1079
1080
1081
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

1082
1083
1084
1085
1086
1087
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

1088
1089
1090
1091
1092
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
1093
1094
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
1095

Sayak Paul's avatar
Sayak Paul committed
1096
        is_correct_format = all("lora" in key for key in state_dict.keys())
1097
1098
1099
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

1100
1101
1102
1103
        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
1104
            metadata=metadata,
1105
1106
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1107
            hotswap=hotswap,
1108
1109
1110
1111
1112
1113
1114
1115
        )
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=None,
            text_encoder=self.text_encoder,
            prefix=self.text_encoder_name,
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
1116
            metadata=metadata,
1117
1118
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1119
            hotswap=hotswap,
1120
1121
1122
1123
1124
1125
1126
1127
        )
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=None,
            text_encoder=self.text_encoder_2,
            prefix=f"{self.text_encoder_name}_2",
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
1128
            metadata=metadata,
1129
1130
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1131
            hotswap=hotswap,
1132
        )
1133
1134

    @classmethod
1135
    def load_lora_into_transformer(
1136
1137
1138
1139
1140
1141
1142
1143
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
1144
    ):
1145
        """
1146
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
1147
        """
1148
1149
1150
1151
1152
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

1153
1154
1155
1156
1157
1158
        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
1159
            metadata=metadata,
1160
1161
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
1162
            hotswap=hotswap,
1163
        )
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
1176
        low_cpu_mem_usage=False,
1177
        hotswap: bool = False,
1178
        metadata=None,
1179
1180
1181
1182
1183
1184
1185
1186
1187
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
1188
1189
1190
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
1201
1202
1203
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
1204
1205
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
1206
1207
1208
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
1209
        """
1210
1211
1212
1213
1214
1215
1216
1217
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
1218
            metadata=metadata,
1219
1220
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
1221
            hotswap=hotswap,
1222
        )
1223
1224

    @classmethod
1225
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionXLLoraLoaderMixin.save_lora_weights with unet->transformer
1226
1227
1228
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
1229
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1230
1231
1232
1233
1234
1235
        text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
1236
1237
1238
        transformer_lora_adapter_metadata=None,
        text_encoder_lora_adapter_metadata=None,
        text_encoder_2_lora_adapter_metadata=None,
1239
1240
    ):
        r"""
1241
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
1242
        """
1243
1244
        lora_layers = {}
        lora_metadata = {}
1245
1246

        if transformer_lora_layers:
1247
1248
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
1249
1250

        if text_encoder_lora_layers:
1251
1252
            lora_layers["text_encoder"] = text_encoder_lora_layers
            lora_metadata["text_encoder"] = text_encoder_lora_adapter_metadata
1253
1254

        if text_encoder_2_lora_layers:
1255
1256
            lora_layers["text_encoder_2"] = text_encoder_2_lora_layers
            lora_metadata["text_encoder_2"] = text_encoder_2_lora_adapter_metadata
1257

1258
1259
1260
        if not lora_layers:
            raise ValueError(
                "You must pass at least one of `transformer_lora_layers`, `text_encoder_lora_layers`, or `text_encoder_2_lora_layers`."
1261
1262
            )

1263
        cls._save_lora_weights(
1264
            save_directory=save_directory,
1265
1266
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
1267
1268
1269
1270
1271
1272
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

1273
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionXLLoraLoaderMixin.fuse_lora with unet->transformer
1274
1275
1276
1277
1278
1279
1280
1281
1282
    def fuse_lora(
        self,
        components: List[str] = ["transformer", "text_encoder", "text_encoder_2"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
1283
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
1284
1285
        """
        super().fuse_lora(
1286
1287
1288
1289
1290
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
1291
1292
        )

1293
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionXLLoraLoaderMixin.unfuse_lora with unet->transformer
1294
1295
    def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder", "text_encoder_2"], **kwargs):
        r"""
1296
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
1297
        """
1298
        super().unfuse_lora(components=components, **kwargs)
1299
1300


1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
class AuraFlowLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`AuraFlowTransformer2DModel`] Specific to [`AuraFlowPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
1318
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
1331
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
1332
1333
1334
1335
1336
1337

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

1338
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
1339

1340
        state_dict, metadata = _fetch_state_dict(
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

1361
1362
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
1363
1364
1365

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
1366
1367
1368
1369
1370
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
1371
1372
    ):
        """
1373
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
1389
1390
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
1391
1392
1393
1394
1395
1396
1397
1398
1399

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
1400
            metadata=metadata,
1401
1402
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1403
            hotswap=hotswap,
1404
1405
1406
1407
1408
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->AuraFlowTransformer2DModel
    def load_lora_into_transformer(
1409
1410
1411
1412
1413
1414
1415
1416
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
1417
1418
    ):
        """
1419
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
1432
            metadata=metadata,
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
1448
        transformer_lora_adapter_metadata: Optional[dict] = None,
1449
1450
    ):
        r"""
1451
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
1452
        """
1453
1454
        lora_layers = {}
        lora_metadata = {}
1455

1456
1457
1458
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
1459

1460
1461
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
1462

1463
        cls._save_lora_weights(
1464
            save_directory=save_directory,
1465
1466
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
1483
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs):
        r"""
1496
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
1497
1498
1499
1500
        """
        super().unfuse_lora(components=components, **kwargs)


Sayak Paul's avatar
Sayak Paul committed
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
class FluxLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`FluxTransformer2DModel`],
    [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).

    Specific to [`StableDiffusion3Pipeline`].
    """

    _lora_loadable_modules = ["transformer", "text_encoder"]
    transformer_name = TRANSFORMER_NAME
    text_encoder_name = TEXT_ENCODER_NAME
Aryan's avatar
Aryan committed
1512
    _control_lora_supported_norm_keys = ["norm_q", "norm_k", "norm_added_q", "norm_added_k"]
Sayak Paul's avatar
Sayak Paul committed
1513
1514
1515
1516
1517
1518

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
1519
        return_alphas: bool = False,
Sayak Paul's avatar
Sayak Paul committed
1520
1521
1522
        **kwargs,
    ):
        r"""
1523
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
Sayak Paul's avatar
Sayak Paul committed
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
1536
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Sayak Paul's avatar
Sayak Paul committed
1537
1538
1539
1540
1541
1542

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

1543
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Sayak Paul's avatar
Sayak Paul committed
1544

1545
        state_dict, metadata = _fetch_state_dict(
Sayak Paul's avatar
Sayak Paul committed
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
Sayak Paul's avatar
Sayak Paul committed
1559
1560
1561
1562
1563
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
Sayak Paul's avatar
Sayak Paul committed
1564

1565
1566
1567
1568
1569
        # TODO (sayakpaul): to a follow-up to clean and try to unify the conditions.
        is_kohya = any(".lora_down.weight" in k for k in state_dict)
        if is_kohya:
            state_dict = _convert_kohya_flux_lora_to_diffusers(state_dict)
            # Kohya already takes care of scaling the LoRA parameters with alpha.
1570
1571
1572
1573
1574
1575
1576
            return cls._prepare_outputs(
                state_dict,
                metadata=metadata,
                alphas=None,
                return_alphas=return_alphas,
                return_metadata=return_lora_metadata,
            )
1577
1578
1579
1580
1581

        is_xlabs = any("processor" in k for k in state_dict)
        if is_xlabs:
            state_dict = _convert_xlabs_flux_lora_to_diffusers(state_dict)
            # xlabs doesn't use `alpha`.
1582
1583
1584
1585
1586
1587
1588
            return cls._prepare_outputs(
                state_dict,
                metadata=metadata,
                alphas=None,
                return_alphas=return_alphas,
                return_metadata=return_lora_metadata,
            )
1589

Aryan's avatar
Aryan committed
1590
1591
1592
        is_bfl_control = any("query_norm.scale" in k for k in state_dict)
        if is_bfl_control:
            state_dict = _convert_bfl_flux_control_lora_to_diffusers(state_dict)
1593
1594
1595
1596
1597
1598
1599
            return cls._prepare_outputs(
                state_dict,
                metadata=metadata,
                alphas=None,
                return_alphas=return_alphas,
                return_metadata=return_lora_metadata,
            )
Aryan's avatar
Aryan committed
1600

1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
        is_fal_kontext = any("base_model" in k for k in state_dict)
        if is_fal_kontext:
            state_dict = _convert_fal_kontext_lora_to_diffusers(state_dict)
            return cls._prepare_outputs(
                state_dict,
                metadata=metadata,
                alphas=None,
                return_alphas=return_alphas,
                return_metadata=return_lora_metadata,
            )

1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
        # For state dicts like
        # https://huggingface.co/TheLastBen/Jon_Snow_Flux_LoRA
        keys = list(state_dict.keys())
        network_alphas = {}
        for k in keys:
            if "alpha" in k:
                alpha_value = state_dict.get(k)
                if (torch.is_tensor(alpha_value) and torch.is_floating_point(alpha_value)) or isinstance(
                    alpha_value, float
                ):
                    network_alphas[k] = state_dict.pop(k)
                else:
                    raise ValueError(
                        f"The alpha key ({k}) seems to be incorrect. If you think this error is unexpected, please open as issue."
                    )

1628
        if return_alphas or return_lora_metadata:
1629
1630
1631
1632
1633
1634
1635
            return cls._prepare_outputs(
                state_dict,
                metadata=metadata,
                alphas=network_alphas,
                return_alphas=return_alphas,
                return_metadata=return_lora_metadata,
            )
1636
1637
        else:
            return state_dict
Sayak Paul's avatar
Sayak Paul committed
1638
1639

    def load_lora_weights(
1640
1641
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
1642
        adapter_name: Optional[str] = None,
1643
1644
        hotswap: bool = False,
        **kwargs,
Sayak Paul's avatar
Sayak Paul committed
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
    ):
        """
        Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
        `self.text_encoder`.

        All kwargs are forwarded to `self.lora_state_dict`.

        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
        loaded.

        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
        dict is loaded into `self.transformer`.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
1664
1665
1666
            low_cpu_mem_usage (`bool`, *optional*):
                `Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
1667
1668
1669
1670
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
            kwargs (`dict`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
Sayak Paul's avatar
Sayak Paul committed
1671
1672
1673
1674
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

1675
1676
1677
1678
1679
1680
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

Sayak Paul's avatar
Sayak Paul committed
1681
1682
1683
1684
1685
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
1686
1687
        kwargs["return_lora_metadata"] = True
        state_dict, network_alphas, metadata = self.lora_state_dict(
1688
1689
            pretrained_model_name_or_path_or_dict, return_alphas=True, **kwargs
        )
Sayak Paul's avatar
Sayak Paul committed
1690

Aryan's avatar
Aryan committed
1691
1692
1693
1694
1695
1696
1697
1698
        has_lora_keys = any("lora" in key for key in state_dict.keys())

        # Flux Control LoRAs also have norm keys
        has_norm_keys = any(
            norm_key in key for key in state_dict.keys() for norm_key in self._control_lora_supported_norm_keys
        )

        if not (has_lora_keys or has_norm_keys):
Sayak Paul's avatar
Sayak Paul committed
1699
1700
            raise ValueError("Invalid LoRA checkpoint.")

Aryan's avatar
Aryan committed
1701
        transformer_lora_state_dict = {
1702
1703
1704
            k: state_dict.get(k)
            for k in list(state_dict.keys())
            if k.startswith(f"{self.transformer_name}.") and "lora" in k
Aryan's avatar
Aryan committed
1705
1706
1707
1708
        }
        transformer_norm_state_dict = {
            k: state_dict.pop(k)
            for k in list(state_dict.keys())
1709
1710
            if k.startswith(f"{self.transformer_name}.")
            and any(norm_key in k for norm_key in self._control_lora_supported_norm_keys)
Aryan's avatar
Aryan committed
1711
1712
1713
        }

        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
1714
1715
1716
1717
1718
        has_param_with_expanded_shape = False
        if len(transformer_lora_state_dict) > 0:
            has_param_with_expanded_shape = self._maybe_expand_transformer_param_shape_or_error_(
                transformer, transformer_lora_state_dict, transformer_norm_state_dict
            )
Aryan's avatar
Aryan committed
1719
1720
1721
1722
1723
1724
1725
1726

        if has_param_with_expanded_shape:
            logger.info(
                "The LoRA weights contain parameters that have different shapes that expected by the transformer. "
                "As a result, the state_dict of the transformer has been expanded to match the LoRA parameter shapes. "
                "To get a comprehensive list of parameter names that were modified, enable debug logging."
            )
        if len(transformer_lora_state_dict) > 0:
1727
1728
            transformer_lora_state_dict = self._maybe_expand_lora_state_dict(
                transformer=transformer, lora_state_dict=transformer_lora_state_dict
1729
            )
1730
1731
1732
1733
1734
1735
1736
1737
            for k in transformer_lora_state_dict:
                state_dict.update({k: transformer_lora_state_dict[k]})

        self.load_lora_into_transformer(
            state_dict,
            network_alphas=network_alphas,
            transformer=transformer,
            adapter_name=adapter_name,
1738
            metadata=metadata,
1739
1740
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1741
            hotswap=hotswap,
1742
        )
Sayak Paul's avatar
Sayak Paul committed
1743

Aryan's avatar
Aryan committed
1744
1745
1746
1747
1748
1749
1750
        if len(transformer_norm_state_dict) > 0:
            transformer._transformer_norm_layers = self._load_norm_into_transformer(
                transformer_norm_state_dict,
                transformer=transformer,
                discard_original_layers=False,
            )

1751
1752
1753
1754
1755
1756
1757
        self.load_lora_into_text_encoder(
            state_dict,
            network_alphas=network_alphas,
            text_encoder=self.text_encoder,
            prefix=self.text_encoder_name,
            lora_scale=self.lora_scale,
            adapter_name=adapter_name,
1758
            metadata=metadata,
1759
1760
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
1761
            hotswap=hotswap,
1762
        )
Sayak Paul's avatar
Sayak Paul committed
1763
1764

    @classmethod
1765
    def load_lora_into_transformer(
1766
1767
1768
1769
1770
        cls,
        state_dict,
        network_alphas,
        transformer,
        adapter_name=None,
1771
        metadata=None,
1772
1773
1774
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
1775
    ):
Sayak Paul's avatar
Sayak Paul committed
1776
        """
1777
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
Sayak Paul's avatar
Sayak Paul committed
1778
        """
1779
1780
1781
1782
1783
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

1784
        # Load the layers corresponding to transformer.
1785
1786
1787
1788
1789
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=network_alphas,
            adapter_name=adapter_name,
1790
            metadata=metadata,
1791
1792
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
1793
            hotswap=hotswap,
1794
        )
Sayak Paul's avatar
Sayak Paul committed
1795

Aryan's avatar
Aryan committed
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
    @classmethod
    def _load_norm_into_transformer(
        cls,
        state_dict,
        transformer,
        prefix=None,
        discard_original_layers=False,
    ) -> Dict[str, torch.Tensor]:
        # Remove prefix if present
        prefix = prefix or cls.transformer_name
        for key in list(state_dict.keys()):
            if key.split(".")[0] == prefix:
1808
                state_dict[key.removeprefix(f"{prefix}.")] = state_dict.pop(key)
Aryan's avatar
Aryan committed
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849

        # Find invalid keys
        transformer_state_dict = transformer.state_dict()
        transformer_keys = set(transformer_state_dict.keys())
        state_dict_keys = set(state_dict.keys())
        extra_keys = list(state_dict_keys - transformer_keys)

        if extra_keys:
            logger.warning(
                f"Unsupported keys found in state dict when trying to load normalization layers into the transformer. The following keys will be ignored:\n{extra_keys}."
            )

        for key in extra_keys:
            state_dict.pop(key)

        # Save the layers that are going to be overwritten so that unload_lora_weights can work as expected
        overwritten_layers_state_dict = {}
        if not discard_original_layers:
            for key in state_dict.keys():
                overwritten_layers_state_dict[key] = transformer_state_dict[key].clone()

        logger.info(
            "The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will directly update the state_dict of the transformer "
            'as opposed to the LoRA layers that will co-exist separately until the "fuse_lora()" method is called. That is to say, the normalization layers will always be directly '
            "fused into the transformer and can only be unfused if `discard_original_layers=True` is passed. This might also have implications when dealing with multiple LoRAs. "
            "If you notice something unexpected, please open an issue: https://github.com/huggingface/diffusers/issues."
        )

        # We can't load with strict=True because the current state_dict does not contain all the transformer keys
        incompatible_keys = transformer.load_state_dict(state_dict, strict=False)
        unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)

        # We shouldn't expect to see the supported norm keys here being present in the unexpected keys.
        if unexpected_keys:
            if any(norm_key in k for k in unexpected_keys for norm_key in cls._control_lora_supported_norm_keys):
                raise ValueError(
                    f"Found {unexpected_keys} as unexpected keys while trying to load norm layers into the transformer."
                )

        return overwritten_layers_state_dict

Sayak Paul's avatar
Sayak Paul committed
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
1861
        low_cpu_mem_usage=False,
1862
        hotswap: bool = False,
1863
        metadata=None,
Sayak Paul's avatar
Sayak Paul committed
1864
1865
1866
1867
1868
1869
1870
1871
1872
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
1873
1874
1875
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
Sayak Paul's avatar
Sayak Paul committed
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
1886
1887
1888
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
1889
1890
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
1891
1892
1893
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
Sayak Paul's avatar
Sayak Paul committed
1894
        """
1895
1896
1897
1898
1899
1900
1901
1902
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
1903
            metadata=metadata,
1904
1905
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
1906
            hotswap=hotswap,
1907
        )
Sayak Paul's avatar
Sayak Paul committed
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights with unet->transformer
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
1920
1921
        transformer_lora_adapter_metadata=None,
        text_encoder_lora_adapter_metadata=None,
Sayak Paul's avatar
Sayak Paul committed
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
    ):
        r"""
        Save the LoRA parameters corresponding to the UNet and text encoder.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
            transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `transformer`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
1944
1945
1946
1947
            transformer_lora_adapter_metadata:
                LoRA adapter metadata associated with the transformer to be serialized with the state dict.
            text_encoder_lora_adapter_metadata:
                LoRA adapter metadata associated with the text encoder to be serialized with the state dict.
Sayak Paul's avatar
Sayak Paul committed
1948
        """
1949
1950
        lora_layers = {}
        lora_metadata = {}
Sayak Paul's avatar
Sayak Paul committed
1951
1952

        if transformer_lora_layers:
1953
1954
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
Sayak Paul's avatar
Sayak Paul committed
1955
1956

        if text_encoder_lora_layers:
1957
1958
            lora_layers[cls.text_encoder_name] = text_encoder_lora_layers
            lora_metadata[cls.text_encoder_name] = text_encoder_lora_adapter_metadata
Sayak Paul's avatar
Sayak Paul committed
1959

1960
1961
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
1962

1963
        cls._save_lora_weights(
Sayak Paul's avatar
Sayak Paul committed
1964
            save_directory=save_directory,
1965
1966
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
Sayak Paul's avatar
Sayak Paul committed
1967
1968
1969
1970
1971
1972
1973
1974
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def fuse_lora(
        self,
1975
        components: List[str] = ["transformer"],
Sayak Paul's avatar
Sayak Paul committed
1976
1977
1978
1979
1980
1981
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
1982
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
Sayak Paul's avatar
Sayak Paul committed
1983
        """
Aryan's avatar
Aryan committed
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996

        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
        if (
            hasattr(transformer, "_transformer_norm_layers")
            and isinstance(transformer._transformer_norm_layers, dict)
            and len(transformer._transformer_norm_layers.keys()) > 0
        ):
            logger.info(
                "The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will be directly updated the state_dict of the transformer "
                "as opposed to the LoRA layers that will co-exist separately until the 'fuse_lora()' method is called. That is to say, the normalization layers will always be directly "
                "fused into the transformer and can only be unfused if `discard_original_layers=True` is passed."
            )

Sayak Paul's avatar
Sayak Paul committed
1997
        super().fuse_lora(
1998
1999
2000
2001
2002
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Sayak Paul's avatar
Sayak Paul committed
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
        )

    def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs):
        r"""
        Reverses the effect of
        [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).

        <Tip warning={true}>

        This is an experimental API.

        </Tip>

        Args:
            components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
        """
Aryan's avatar
Aryan committed
2019
2020
2021
2022
        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
        if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers:
            transformer.load_state_dict(transformer._transformer_norm_layers, strict=False)

2023
        super().unfuse_lora(components=components, **kwargs)
Sayak Paul's avatar
Sayak Paul committed
2024

2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
    # We override this here account for `_transformer_norm_layers` and `_overwritten_params`.
    def unload_lora_weights(self, reset_to_overwritten_params=False):
        """
        Unloads the LoRA parameters.

        Args:
            reset_to_overwritten_params (`bool`, defaults to `False`): Whether to reset the LoRA-loaded modules
                to their original params. Refer to the [Flux
                documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) to learn more.

        Examples:

        ```python
        >>> # Assuming `pipeline` is already loaded with the LoRA parameters.
        >>> pipeline.unload_lora_weights()
        >>> ...
        ```
        """
Aryan's avatar
Aryan committed
2043
2044
2045
2046
2047
2048
2049
        super().unload_lora_weights()

        transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
        if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers:
            transformer.load_state_dict(transformer._transformer_norm_layers, strict=False)
            transformer._transformer_norm_layers = None

2050
        if reset_to_overwritten_params and getattr(transformer, "_overwritten_params", None) is not None:
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
            overwritten_params = transformer._overwritten_params
            module_names = set()

            for param_name in overwritten_params:
                if param_name.endswith(".weight"):
                    module_names.add(param_name.replace(".weight", ""))

            for name, module in transformer.named_modules():
                if isinstance(module, torch.nn.Linear) and name in module_names:
                    module_weight = module.weight.data
                    module_bias = module.bias.data if module.bias is not None else None
                    bias = module_bias is not None

                    parent_module_name, _, current_module_name = name.rpartition(".")
                    parent_module = transformer.get_submodule(parent_module_name)

                    current_param_weight = overwritten_params[f"{name}.weight"]
                    in_features, out_features = current_param_weight.shape[1], current_param_weight.shape[0]
                    with torch.device("meta"):
                        original_module = torch.nn.Linear(
                            in_features,
                            out_features,
                            bias=bias,
                            dtype=module_weight.dtype,
                        )

                    tmp_state_dict = {"weight": current_param_weight}
                    if module_bias is not None:
                        tmp_state_dict.update({"bias": overwritten_params[f"{name}.bias"]})
                    original_module.load_state_dict(tmp_state_dict, assign=True, strict=True)
                    setattr(parent_module, current_module_name, original_module)

                    del tmp_state_dict

                    if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX:
                        attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name]
                        new_value = int(current_param_weight.shape[1])
                        old_value = getattr(transformer.config, attribute_name)
                        setattr(transformer.config, attribute_name, new_value)
                        logger.info(
                            f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}."
                        )

Aryan's avatar
Aryan committed
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
    @classmethod
    def _maybe_expand_transformer_param_shape_or_error_(
        cls,
        transformer: torch.nn.Module,
        lora_state_dict=None,
        norm_state_dict=None,
        prefix=None,
    ) -> bool:
        """
        Control LoRA expands the shape of the input layer from (3072, 64) to (3072, 128). This method handles that and
2104
        generalizes things a bit so that any parameter that needs expansion receives appropriate treatment.
Aryan's avatar
Aryan committed
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
        """
        state_dict = {}
        if lora_state_dict is not None:
            state_dict.update(lora_state_dict)
        if norm_state_dict is not None:
            state_dict.update(norm_state_dict)

        # Remove prefix if present
        prefix = prefix or cls.transformer_name
        for key in list(state_dict.keys()):
            if key.split(".")[0] == prefix:
2116
                state_dict[key.removeprefix(f"{prefix}.")] = state_dict.pop(key)
Aryan's avatar
Aryan committed
2117
2118
2119

        # Expand transformer parameter shapes if they don't match lora
        has_param_with_shape_update = False
2120
2121
        overwritten_params = {}

2122
        is_peft_loaded = getattr(transformer, "peft_config", None) is not None
hlky's avatar
hlky committed
2123
        is_quantized = hasattr(transformer, "hf_quantizer")
Aryan's avatar
Aryan committed
2124
2125
2126
        for name, module in transformer.named_modules():
            if isinstance(module, torch.nn.Linear):
                module_weight = module.weight.data
2127
                module_bias = module.bias.data if module.bias is not None else None
Aryan's avatar
Aryan committed
2128
2129
                bias = module_bias is not None

2130
2131
2132
2133
                lora_base_name = name.replace(".base_layer", "") if is_peft_loaded else name
                lora_A_weight_name = f"{lora_base_name}.lora_A.weight"
                lora_B_weight_name = f"{lora_base_name}.lora_B.weight"
                if lora_A_weight_name not in state_dict:
Aryan's avatar
Aryan committed
2134
2135
2136
2137
2138
                    continue

                in_features = state_dict[lora_A_weight_name].shape[1]
                out_features = state_dict[lora_B_weight_name].shape[0]

2139
2140
2141
2142
2143
                # Model maybe loaded with different quantization schemes which may flatten the params.
                # `bitsandbytes`, for example, flatten the weights when using 4bit. 8bit bnb models
                # preserve weight shape.
                module_weight_shape = cls._calculate_module_shape(model=transformer, base_module=module)

Aryan's avatar
Aryan committed
2144
                # This means there's no need for an expansion in the params, so we simply skip.
2145
                if tuple(module_weight_shape) == (out_features, in_features):
Aryan's avatar
Aryan committed
2146
2147
                    continue

hlky's avatar
hlky committed
2148
                module_out_features, module_in_features = module_weight_shape
2149
2150
2151
2152
2153
2154
                debug_message = ""
                if in_features > module_in_features:
                    debug_message += (
                        f'Expanding the nn.Linear input/output features for module="{name}" because the provided LoRA '
                        f"checkpoint contains higher number of features than expected. The number of input_features will be "
                        f"expanded from {module_in_features} to {in_features}"
Aryan's avatar
Aryan committed
2155
                    )
2156
                if out_features > module_out_features:
2157
2158
2159
2160
2161
2162
                    debug_message += (
                        ", and the number of output features will be "
                        f"expanded from {module_out_features} to {out_features}."
                    )
                else:
                    debug_message += "."
2163
2164
2165
2166
2167
2168
2169
2170
                if debug_message:
                    logger.debug(debug_message)

                if out_features > module_out_features or in_features > module_in_features:
                    has_param_with_shape_update = True
                    parent_module_name, _, current_module_name = name.rpartition(".")
                    parent_module = transformer.get_submodule(parent_module_name)

hlky's avatar
hlky committed
2171
2172
2173
2174
                    if is_quantized:
                        module_weight = _maybe_dequantize_weight_for_expanded_lora(transformer, module)

                    # TODO: consider if this layer needs to be a quantized layer as well if `is_quantized` is True.
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
                    with torch.device("meta"):
                        expanded_module = torch.nn.Linear(
                            in_features, out_features, bias=bias, dtype=module_weight.dtype
                        )
                    # Only weights are expanded and biases are not. This is because only the input dimensions
                    # are changed while the output dimensions remain the same. The shape of the weight tensor
                    # is (out_features, in_features), while the shape of bias tensor is (out_features,), which
                    # explains the reason why only weights are expanded.
                    new_weight = torch.zeros_like(
                        expanded_module.weight.data, device=module_weight.device, dtype=module_weight.dtype
                    )
hlky's avatar
hlky committed
2186
                    slices = tuple(slice(0, dim) for dim in module_weight_shape)
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
                    new_weight[slices] = module_weight
                    tmp_state_dict = {"weight": new_weight}
                    if module_bias is not None:
                        tmp_state_dict["bias"] = module_bias
                    expanded_module.load_state_dict(tmp_state_dict, strict=True, assign=True)

                    setattr(parent_module, current_module_name, expanded_module)

                    del tmp_state_dict

                    if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX:
                        attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name]
                        new_value = int(expanded_module.weight.data.shape[1])
                        old_value = getattr(transformer.config, attribute_name)
                        setattr(transformer.config, attribute_name, new_value)
                        logger.info(
                            f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}."
                        )
Aryan's avatar
Aryan committed
2205

2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
                    # For `unload_lora_weights()`.
                    # TODO: this could lead to more memory overhead if the number of overwritten params
                    # are large. Should be revisited later and tackled through a `discard_original_layers` arg.
                    overwritten_params[f"{current_module_name}.weight"] = module_weight
                    if module_bias is not None:
                        overwritten_params[f"{current_module_name}.bias"] = module_bias

        if len(overwritten_params) > 0:
            transformer._overwritten_params = overwritten_params

2216
        return has_param_with_shape_update
Aryan's avatar
Aryan committed
2217

2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
    @classmethod
    def _maybe_expand_lora_state_dict(cls, transformer, lora_state_dict):
        expanded_module_names = set()
        transformer_state_dict = transformer.state_dict()
        prefix = f"{cls.transformer_name}."

        lora_module_names = [
            key[: -len(".lora_A.weight")] for key in lora_state_dict if key.endswith(".lora_A.weight")
        ]
        lora_module_names = [name[len(prefix) :] for name in lora_module_names if name.startswith(prefix)]
        lora_module_names = sorted(set(lora_module_names))
        transformer_module_names = sorted({name for name, _ in transformer.named_modules()})
        unexpected_modules = set(lora_module_names) - set(transformer_module_names)
        if unexpected_modules:
            logger.debug(f"Found unexpected modules: {unexpected_modules}. These will be ignored.")

        for k in lora_module_names:
            if k in unexpected_modules:
                continue

            base_param_name = (
2239
                f"{k.replace(prefix, '')}.base_layer.weight"
2240
                if f"{k.replace(prefix, '')}.base_layer.weight" in transformer_state_dict
2241
                else f"{k.replace(prefix, '')}.weight"
2242
2243
2244
2245
            )
            base_weight_param = transformer_state_dict[base_param_name]
            lora_A_param = lora_state_dict[f"{prefix}{k}.lora_A.weight"]

2246
2247
2248
2249
            # TODO (sayakpaul): Handle the cases when we actually need to expand when using quantization.
            base_module_shape = cls._calculate_module_shape(model=transformer, base_weight_param_name=base_param_name)

            if base_module_shape[1] > lora_A_param.shape[1]:
2250
2251
2252
2253
2254
                shape = (lora_A_param.shape[0], base_weight_param.shape[1])
                expanded_state_dict_weight = torch.zeros(shape, device=base_weight_param.device)
                expanded_state_dict_weight[:, : lora_A_param.shape[1]].copy_(lora_A_param)
                lora_state_dict[f"{prefix}{k}.lora_A.weight"] = expanded_state_dict_weight
                expanded_module_names.add(k)
2255
            elif base_module_shape[1] < lora_A_param.shape[1]:
2256
2257
                raise NotImplementedError(
                    f"This LoRA param ({k}.lora_A.weight) has an incompatible shape {lora_A_param.shape}. Please open an issue to file for a feature request - https://github.com/huggingface/diffusers/issues/new."
Aryan's avatar
Aryan committed
2258
2259
                )

2260
2261
2262
2263
        if expanded_module_names:
            logger.info(
                f"The following LoRA modules were zero padded to match the state dict of {cls.transformer_name}: {expanded_module_names}. Please open an issue if you think this was unexpected - https://github.com/huggingface/diffusers/issues/new."
            )
Aryan's avatar
Aryan committed
2264

2265
        return lora_state_dict
Aryan's avatar
Aryan committed
2266

2267
2268
2269
2270
2271
2272
2273
    @staticmethod
    def _calculate_module_shape(
        model: "torch.nn.Module",
        base_module: "torch.nn.Linear" = None,
        base_weight_param_name: str = None,
    ) -> "torch.Size":
        def _get_weight_shape(weight: torch.Tensor):
hlky's avatar
hlky committed
2274
2275
2276
2277
2278
2279
            if weight.__class__.__name__ == "Params4bit":
                return weight.quant_state.shape
            elif weight.__class__.__name__ == "GGUFParameter":
                return weight.quant_shape
            else:
                return weight.shape
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293

        if base_module is not None:
            return _get_weight_shape(base_module.weight)
        elif base_weight_param_name is not None:
            if not base_weight_param_name.endswith(".weight"):
                raise ValueError(
                    f"Invalid `base_weight_param_name` passed as it does not end with '.weight' {base_weight_param_name=}."
                )
            module_path = base_weight_param_name.rsplit(".weight", 1)[0]
            submodule = get_submodule_by_name(model, module_path)
            return _get_weight_shape(submodule.weight)

        raise ValueError("Either `base_module` or `base_weight_param_name` must be provided.")

2294
2295
2296
2297
2298
2299
2300
2301
2302
    @staticmethod
    def _prepare_outputs(state_dict, metadata, alphas=None, return_alphas=False, return_metadata=False):
        outputs = [state_dict]
        if return_alphas:
            outputs.append(alphas)
        if return_metadata:
            outputs.append(metadata)
        return tuple(outputs) if (return_alphas or return_metadata) else state_dict

Sayak Paul's avatar
Sayak Paul committed
2303

2304
2305
2306
2307
2308
2309
# The reason why we subclass from `StableDiffusionLoraLoaderMixin` here is because Amused initially
# relied on `StableDiffusionLoraLoaderMixin` for its LoRA support.
class AmusedLoraLoaderMixin(StableDiffusionLoraLoaderMixin):
    _lora_loadable_modules = ["transformer", "text_encoder"]
    transformer_name = TRANSFORMER_NAME
    text_encoder_name = TEXT_ENCODER_NAME
Dhruv Nair's avatar
Dhruv Nair committed
2310
2311

    @classmethod
2312
2313
    # Copied from diffusers.loaders.lora_pipeline.FluxLoraLoaderMixin.load_lora_into_transformer with FluxTransformer2DModel->UVit2DModel
    def load_lora_into_transformer(
2314
2315
2316
2317
2318
        cls,
        state_dict,
        network_alphas,
        transformer,
        adapter_name=None,
2319
        metadata=None,
2320
2321
2322
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
2323
    ):
Dhruv Nair's avatar
Dhruv Nair committed
2324
        """
2325
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
Dhruv Nair's avatar
Dhruv Nair committed
2326
        """
2327
2328
2329
2330
        if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )
Dhruv Nair's avatar
Dhruv Nair committed
2331

2332
        # Load the layers corresponding to transformer.
2333
2334
2335
2336
2337
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=network_alphas,
            adapter_name=adapter_name,
2338
            metadata=metadata,
2339
2340
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2341
            hotswap=hotswap,
2342
        )
Dhruv Nair's avatar
Dhruv Nair committed
2343

2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
    def load_lora_into_text_encoder(
        cls,
        state_dict,
        network_alphas,
        text_encoder,
        prefix=None,
        lora_scale=1.0,
        adapter_name=None,
        _pipeline=None,
2355
        low_cpu_mem_usage=False,
2356
        hotswap: bool = False,
2357
        metadata=None,
2358
2359
2360
2361
2362
2363
2364
2365
2366
    ):
        """
        This will load the LoRA layers specified in `state_dict` into `text_encoder`

        Parameters:
            state_dict (`dict`):
                A standard state dict containing the lora layer parameters. The key should be prefixed with an
                additional `text_encoder` to distinguish between unet lora layers.
            network_alphas (`Dict[str, float]`):
2367
2368
2369
                The value of the network alpha used for stable learning and preventing underflow. This value has the
                same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
                link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
            text_encoder (`CLIPTextModel`):
                The text encoder model to load the LoRA layers into.
            prefix (`str`):
                Expected prefix of the `text_encoder` in the `state_dict`.
            lora_scale (`float`):
                How much to scale the output of the lora linear layer before it is added with the output of the regular
                lora layer.
            adapter_name (`str`, *optional*):
                Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
                `default_{i}` where i is the total number of adapters being loaded.
2380
2381
2382
            low_cpu_mem_usage (`bool`, *optional*):
                Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
                weights.
2383
2384
            hotswap (`bool`, *optional*):
                See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
2385
2386
2387
            metadata (`dict`):
                Optional LoRA adapter metadata. When supplied, the `LoraConfig` arguments of `peft` won't be derived
                from the state dict.
2388
        """
2389
2390
2391
2392
2393
2394
2395
2396
        _load_lora_into_text_encoder(
            state_dict=state_dict,
            network_alphas=network_alphas,
            lora_scale=lora_scale,
            text_encoder=text_encoder,
            prefix=prefix,
            text_encoder_name=cls.text_encoder_name,
            adapter_name=adapter_name,
2397
            metadata=metadata,
2398
2399
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2400
            hotswap=hotswap,
2401
        )
2402

Dhruv Nair's avatar
Dhruv Nair committed
2403
2404
2405
2406
    @classmethod
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
2407
        text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
Dhruv Nair's avatar
Dhruv Nair committed
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
        transformer_lora_layers: Dict[str, torch.nn.Module] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
    ):
        r"""
        Save the LoRA parameters corresponding to the UNet and text encoder.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save LoRA parameters to. Will be created if it doesn't exist.
2420
2421
2422
2423
2424
            unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `unet`.
            text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
                State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
                encoder LoRA state dict because it comes from 🤗 Transformers.
Dhruv Nair's avatar
Dhruv Nair committed
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
        """
        state_dict = {}

2438
2439
        if not (transformer_lora_layers or text_encoder_lora_layers):
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
Dhruv Nair's avatar
Dhruv Nair committed
2440
2441

        if transformer_lora_layers:
2442
            state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
Dhruv Nair's avatar
Dhruv Nair committed
2443

2444
        if text_encoder_lora_layers:
2445
            state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name))
2446

Dhruv Nair's avatar
Dhruv Nair committed
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
        # Save the model
        cls.write_lora_layers(
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

2457

Aryan's avatar
Aryan committed
2458
2459
class CogVideoXLoraLoaderMixin(LoraBaseMixin):
    r"""
2460
    Load LoRA layers into [`CogVideoXTransformer3DModel`]. Specific to [`CogVideoXPipeline`].
Aryan's avatar
Aryan committed
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
2475
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
Aryan's avatar
Aryan committed
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
2488
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Aryan's avatar
Aryan committed
2489
2490
2491
2492
2493
2494

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

2495
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Aryan's avatar
Aryan committed
2496

2497
        state_dict, metadata = _fetch_state_dict(
Aryan's avatar
Aryan committed
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

Sayak Paul's avatar
Sayak Paul committed
2512
2513
2514
2515
2516
2517
        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

2518
2519
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
Aryan's avatar
Aryan committed
2520
2521

    def load_lora_weights(
2522
2523
2524
2525
2526
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
Aryan's avatar
Aryan committed
2527
2528
    ):
        """
2529
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
Aryan's avatar
Aryan committed
2530
2531
2532
2533
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

2534
2535
2536
2537
2538
2539
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

Aryan's avatar
Aryan committed
2540
2541
2542
2543
2544
        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
2545
2546
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
Aryan's avatar
Aryan committed
2547

Sayak Paul's avatar
Sayak Paul committed
2548
        is_correct_format = all("lora" in key for key in state_dict.keys())
Aryan's avatar
Aryan committed
2549
2550
2551
2552
2553
2554
2555
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
2556
            metadata=metadata,
Aryan's avatar
Aryan committed
2557
            _pipeline=self,
2558
            low_cpu_mem_usage=low_cpu_mem_usage,
2559
            hotswap=hotswap,
Aryan's avatar
Aryan committed
2560
2561
2562
        )

    @classmethod
2563
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->CogVideoXTransformer3DModel
2564
    def load_lora_into_transformer(
2565
2566
2567
2568
2569
2570
2571
2572
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
2573
    ):
Aryan's avatar
Aryan committed
2574
        """
2575
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
Aryan's avatar
Aryan committed
2576
        """
2577
2578
2579
2580
2581
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

2582
2583
2584
2585
2586
2587
        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
2588
            metadata=metadata,
2589
2590
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2591
            hotswap=hotswap,
2592
        )
Aryan's avatar
Aryan committed
2593
2594
2595
2596
2597
2598

    @classmethod
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
2599
2600
2601
2602
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
2603
        transformer_lora_adapter_metadata: Optional[dict] = None,
2604
2605
    ):
        r"""
2606
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
2607
        """
2608
2609
        lora_layers = {}
        lora_metadata = {}
2610

2611
2612
2613
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
2614

2615
2616
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
2617

2618
        cls._save_lora_weights(
2619
            save_directory=save_directory,
2620
2621
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
2622
2623
2624
2625
2626
2627
2628
2629
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def fuse_lora(
        self,
2630
        components: List[str] = ["transformer"],
2631
2632
2633
2634
2635
2636
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
2637
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
2638
2639
        """
        super().fuse_lora(
2640
2641
2642
2643
2644
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
2645
2646
        )

2647
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
2648
        r"""
2649
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
2650
        """
2651
        super().unfuse_lora(components=components, **kwargs)
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670


class Mochi1LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`MochiTransformer3DModel`]. Specific to [`MochiPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
2671
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
2684
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
2685
2686
2687
2688
2689
2690

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

2691
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
2692

2693
        state_dict, metadata = _fetch_state_dict(
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

2714
2715
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
2716
2717
2718

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
2719
2720
2721
2722
2723
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
2724
2725
    ):
        """
2726
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
2742
2743
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
2744
2745
2746
2747
2748
2749
2750
2751
2752

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
2753
            metadata=metadata,
2754
2755
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
2756
            hotswap=hotswap,
2757
2758
2759
        )

    @classmethod
2760
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->MochiTransformer3DModel
2761
    def load_lora_into_transformer(
2762
2763
2764
2765
2766
2767
2768
2769
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
2770
2771
    ):
        """
2772
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
Aryan's avatar
Aryan committed
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
2785
            metadata=metadata,
Aryan's avatar
Aryan committed
2786
2787
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2788
            hotswap=hotswap,
Aryan's avatar
Aryan committed
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
2801
        transformer_lora_adapter_metadata: Optional[dict] = None,
Aryan's avatar
Aryan committed
2802
2803
    ):
        r"""
2804
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
Aryan's avatar
Aryan committed
2805
        """
2806
2807
        lora_layers = {}
        lora_metadata = {}
Aryan's avatar
Aryan committed
2808

2809
2810
2811
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
2812

2813
2814
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
Aryan's avatar
Aryan committed
2815

2816
        cls._save_lora_weights(
Aryan's avatar
Aryan committed
2817
            save_directory=save_directory,
2818
2819
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
Aryan's avatar
Aryan committed
2820
2821
2822
2823
2824
2825
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

2826
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
Aryan's avatar
Aryan committed
2827
2828
    def fuse_lora(
        self,
2829
        components: List[str] = ["transformer"],
Aryan's avatar
Aryan committed
2830
2831
2832
2833
2834
2835
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
2836
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
Aryan's avatar
Aryan committed
2837
2838
        """
        super().fuse_lora(
2839
2840
2841
2842
2843
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Aryan's avatar
Aryan committed
2844
2845
        )

2846
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
2847
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
Aryan's avatar
Aryan committed
2848
        r"""
2849
2850
2851
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
        """
        super().unfuse_lora(components=components, **kwargs)
Aryan's avatar
Aryan committed
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869


class LTXVideoLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`LTXVideoTransformer3DModel`]. Specific to [`LTXPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
2870
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
Aryan's avatar
Aryan committed
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
2883
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Aryan's avatar
Aryan committed
2884
2885
2886
2887
2888
2889

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

2890
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Aryan's avatar
Aryan committed
2891

2892
        state_dict, metadata = _fetch_state_dict(
Aryan's avatar
Aryan committed
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

2913
2914
2915
2916
        is_non_diffusers_format = any(k.startswith("diffusion_model.") for k in state_dict)
        if is_non_diffusers_format:
            state_dict = _convert_non_diffusers_ltxv_lora_to_diffusers(state_dict)

2917
2918
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
Aryan's avatar
Aryan committed
2919
2920
2921

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
2922
2923
2924
2925
2926
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
Aryan's avatar
Aryan committed
2927
2928
    ):
        """
2929
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
Aryan's avatar
Aryan committed
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
2945
2946
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
Aryan's avatar
Aryan committed
2947
2948
2949
2950
2951
2952
2953
2954
2955

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
2956
            metadata=metadata,
Aryan's avatar
Aryan committed
2957
2958
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
2959
            hotswap=hotswap,
Aryan's avatar
Aryan committed
2960
2961
2962
2963
2964
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->LTXVideoTransformer3DModel
    def load_lora_into_transformer(
2965
2966
2967
2968
2969
2970
2971
2972
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
Aryan's avatar
Aryan committed
2973
2974
    ):
        """
2975
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
2988
            metadata=metadata,
2989
2990
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
2991
            hotswap=hotswap,
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
3004
        transformer_lora_adapter_metadata: Optional[dict] = None,
3005
3006
    ):
        r"""
3007
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
3008
        """
3009
3010
        lora_layers = {}
        lora_metadata = {}
3011

3012
3013
3014
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
3015

3016
3017
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
3018

3019
        cls._save_lora_weights(
3020
            save_directory=save_directory,
3021
3022
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
3023
3024
3025
3026
3027
3028
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

3029
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
3030
3031
    def fuse_lora(
        self,
3032
        components: List[str] = ["transformer"],
3033
3034
3035
3036
3037
3038
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
3039
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
3040
3041
        """
        super().fuse_lora(
3042
3043
3044
3045
3046
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
3047
3048
        )

3049
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
3050
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
3051
        r"""
3052
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
3053
        """
3054
        super().unfuse_lora(components=components, **kwargs)
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073


class SanaLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`SanaTransformer2DModel`]. Specific to [`SanaPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
3074
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
3087
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
3088
3089
3090
3091
3092
3093

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

3094
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
3095

3096
        state_dict, metadata = _fetch_state_dict(
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

3117
3118
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
3119
3120
3121

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
3122
3123
3124
3125
3126
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
3127
3128
    ):
        """
3129
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
3145
3146
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
3147
3148
3149
3150
3151
3152
3153
3154
3155

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
3156
            metadata=metadata,
3157
3158
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
3159
            hotswap=hotswap,
3160
3161
3162
3163
3164
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->SanaTransformer2DModel
    def load_lora_into_transformer(
3165
3166
3167
3168
3169
3170
3171
3172
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
3173
3174
    ):
        """
3175
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
3188
            metadata=metadata,
3189
3190
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
3191
            hotswap=hotswap,
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
3204
        transformer_lora_adapter_metadata: Optional[dict] = None,
3205
3206
    ):
        r"""
3207
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
3208
        """
3209
3210
        lora_layers = {}
        lora_metadata = {}
3211

3212
3213
3214
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
3215

3216
3217
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
3218

3219
        cls._save_lora_weights(
3220
            save_directory=save_directory,
3221
3222
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
3223
3224
3225
3226
3227
3228
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

3229
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
3230
3231
    def fuse_lora(
        self,
3232
        components: List[str] = ["transformer"],
3233
3234
3235
3236
3237
3238
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
3239
3240
3241
3242
3243
3244
3245
3246
3247
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )
3248

3249
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
3250
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
3251
        r"""
3252
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
3253
        """
3254
        super().unfuse_lora(components=components, **kwargs)
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272


class HunyuanVideoLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`HunyuanVideoTransformer3DModel`]. Specific to [`HunyuanVideoPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
3273
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
3286
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
3287
3288
3289
3290
3291
3292

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

3293
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
3294

3295
        state_dict, metadata = _fetch_state_dict(
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

3316
3317
3318
3319
        is_original_hunyuan_video = any("img_attn_qkv" in k for k in state_dict)
        if is_original_hunyuan_video:
            state_dict = _convert_hunyuan_video_lora_to_diffusers(state_dict)

3320
3321
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
3322
3323
3324

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
3325
3326
3327
3328
3329
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
3330
3331
    ):
        """
3332
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
3348
3349
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
3350
3351
3352
3353
3354
3355
3356
3357
3358

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
3359
            metadata=metadata,
3360
3361
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
3362
            hotswap=hotswap,
3363
3364
3365
3366
3367
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->HunyuanVideoTransformer3DModel
    def load_lora_into_transformer(
3368
3369
3370
3371
3372
3373
3374
3375
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
3376
3377
    ):
        """
3378
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
3391
            metadata=metadata,
3392
3393
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
3394
            hotswap=hotswap,
3395
3396
3397
3398
3399
3400
3401
3402
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
Aryan's avatar
Aryan committed
3403
3404
3405
3406
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
3407
        transformer_lora_adapter_metadata: Optional[dict] = None,
Aryan's avatar
Aryan committed
3408
3409
    ):
        r"""
3410
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
Aryan's avatar
Aryan committed
3411
        """
3412
3413
        lora_layers = {}
        lora_metadata = {}
Aryan's avatar
Aryan committed
3414

3415
3416
3417
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
3418

3419
3420
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
Aryan's avatar
Aryan committed
3421

3422
        cls._save_lora_weights(
Aryan's avatar
Aryan committed
3423
            save_directory=save_directory,
3424
3425
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
Aryan's avatar
Aryan committed
3426
3427
3428
3429
3430
3431
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

3432
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
Aryan's avatar
Aryan committed
3433
3434
    def fuse_lora(
        self,
3435
        components: List[str] = ["transformer"],
Aryan's avatar
Aryan committed
3436
3437
3438
3439
3440
3441
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
3442
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
Aryan's avatar
Aryan committed
3443
3444
        """
        super().fuse_lora(
3445
3446
3447
3448
3449
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Aryan's avatar
Aryan committed
3450
3451
        )

3452
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
3453
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
Aryan's avatar
Aryan committed
3454
        r"""
3455
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
Aryan's avatar
Aryan committed
3456
        """
3457
        super().unfuse_lora(components=components, **kwargs)
Aryan's avatar
Aryan committed
3458
3459


3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
class Lumina2LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`Lumina2Transformer2DModel`]. Specific to [`Lumina2Text2ImgPipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
3476
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
3489
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
3490
3491
3492
3493
3494
3495

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

3496
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
3497

3498
        state_dict, metadata = _fetch_state_dict(
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

3519
3520
3521
3522
3523
        # conversion.
        non_diffusers = any(k.startswith("diffusion_model.") for k in state_dict)
        if non_diffusers:
            state_dict = _convert_non_diffusers_lumina2_lora_to_diffusers(state_dict)

3524
3525
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
3526
3527
3528

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
3529
3530
3531
3532
3533
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
3534
3535
    ):
        """
3536
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
3552
3553
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
3554
3555
3556
3557
3558
3559
3560
3561
3562

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
3563
            metadata=metadata,
3564
3565
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
3566
            hotswap=hotswap,
3567
3568
3569
3570
3571
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->Lumina2Transformer2DModel
    def load_lora_into_transformer(
3572
3573
3574
3575
3576
3577
3578
3579
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
3580
3581
    ):
        """
3582
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
3595
            metadata=metadata,
3596
3597
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
3598
            hotswap=hotswap,
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
3611
        transformer_lora_adapter_metadata: Optional[dict] = None,
3612
3613
    ):
        r"""
3614
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
3615
        """
3616
3617
        lora_layers = {}
        lora_metadata = {}
3618

3619
3620
3621
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
3622

3623
3624
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
3625

3626
        cls._save_lora_weights(
3627
            save_directory=save_directory,
3628
3629
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
3646
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
3647
3648
        """
        super().fuse_lora(
3649
3650
3651
3652
3653
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
3654
3655
3656
3657
3658
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
3659
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
3660
        """
3661
        super().unfuse_lora(components=components, **kwargs)
3662
3663


Aryan's avatar
Aryan committed
3664
3665
3666
3667
3668
class WanLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`WanTransformer3DModel`]. Specific to [`WanPipeline`] and `[WanImageToVideoPipeline`].
    """

3669
    _lora_loadable_modules = ["transformer", "transformer_2"]
Aryan's avatar
Aryan committed
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
3680
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
Aryan's avatar
Aryan committed
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
3693
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Aryan's avatar
Aryan committed
3694
3695
3696
3697
3698
3699

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

3700
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Aryan's avatar
Aryan committed
3701

3702
        state_dict, metadata = _fetch_state_dict(
Aryan's avatar
Aryan committed
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
3716
3717
        if any(k.startswith("diffusion_model.") for k in state_dict):
            state_dict = _convert_non_diffusers_wan_lora_to_diffusers(state_dict)
3718
3719
        elif any(k.startswith("lora_unet_") for k in state_dict):
            state_dict = _convert_musubi_wan_lora_to_diffusers(state_dict)
Aryan's avatar
Aryan committed
3720
3721
3722
3723
3724
3725
3726

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

3727
3728
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
Aryan's avatar
Aryan committed
3729

3730
3731
3732
3733
3734
3735
3736
3737
3738
    @classmethod
    def _maybe_expand_t2v_lora_for_i2v(
        cls,
        transformer: torch.nn.Module,
        state_dict,
    ):
        if transformer.config.image_dim is None:
            return state_dict

3739
3740
        target_device = transformer.device

3741
        if any(k.startswith("transformer.blocks.") for k in state_dict):
3742
            num_blocks = len({k.split("blocks.")[1].split(".")[0] for k in state_dict if "blocks." in k})
3743
            is_i2v_lora = any("add_k_proj" in k for k in state_dict) and any("add_v_proj" in k for k in state_dict)
3744
            has_bias = any(".lora_B.bias" in k for k in state_dict)
3745
3746
3747
3748
3749
3750

            if is_i2v_lora:
                return state_dict

            for i in range(num_blocks):
                for o, c in zip(["k_img", "v_img"], ["add_k_proj", "add_v_proj"]):
3751
3752
3753
3754
3755
3756
3757
                    # These keys should exist if the block `i` was part of the T2V LoRA.
                    ref_key_lora_A = f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"
                    ref_key_lora_B = f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"

                    if ref_key_lora_A not in state_dict or ref_key_lora_B not in state_dict:
                        continue

3758
                    state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_A.weight"] = torch.zeros_like(
3759
                        state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"], device=target_device
3760
3761
                    )
                    state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.weight"] = torch.zeros_like(
3762
                        state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"], device=target_device
3763
3764
                    )

3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
                    # If the original LoRA had biases (indicated by has_bias)
                    # AND the specific reference bias key exists for this block.

                    ref_key_lora_B_bias = f"transformer.blocks.{i}.attn2.to_k.lora_B.bias"
                    if has_bias and ref_key_lora_B_bias in state_dict:
                        ref_lora_B_bias_tensor = state_dict[ref_key_lora_B_bias]
                        state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.bias"] = torch.zeros_like(
                            ref_lora_B_bias_tensor,
                            device=target_device,
                        )

3776
3777
        return state_dict

Aryan's avatar
Aryan committed
3778
    def load_lora_weights(
3779
3780
3781
3782
3783
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
Aryan's avatar
Aryan committed
3784
3785
    ):
        """
3786
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
Aryan's avatar
Aryan committed
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
3802
3803
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
3804
3805
3806
3807
3808
        # convert T2V LoRA to I2V LoRA (when loaded to Wan I2V) by adding zeros for the additional (missing) _img layers
        state_dict = self._maybe_expand_t2v_lora_for_i2v(
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            state_dict=state_dict,
        )
Aryan's avatar
Aryan committed
3809
3810
3811
3812
        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
        load_into_transformer_2 = kwargs.pop("load_into_transformer_2", False)
        if load_into_transformer_2:
            if not hasattr(self, "transformer_2"):
                raise AttributeError(
                    f"'{type(self).__name__}' object has no attribute transformer_2"
                    "Note that Wan2.1 models do not have a transformer_2 component."
                    "Ensure the model has a transformer_2 component before setting load_into_transformer_2=True."
                )
            self.load_lora_into_transformer(
                state_dict,
                transformer=self.transformer_2,
                adapter_name=adapter_name,
                metadata=metadata,
                _pipeline=self,
                low_cpu_mem_usage=low_cpu_mem_usage,
                hotswap=hotswap,
            )
        else:
            self.load_lora_into_transformer(
                state_dict,
                transformer=getattr(self, self.transformer_name)
                if not hasattr(self, "transformer")
                else self.transformer,
                adapter_name=adapter_name,
                metadata=metadata,
                _pipeline=self,
                low_cpu_mem_usage=low_cpu_mem_usage,
                hotswap=hotswap,
            )
Aryan's avatar
Aryan committed
3842
3843
3844
3845

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->WanTransformer3DModel
    def load_lora_into_transformer(
3846
3847
3848
3849
3850
3851
3852
3853
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
Aryan's avatar
Aryan committed
3854
3855
    ):
        """
3856
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
            metadata=metadata,
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
        transformer_lora_adapter_metadata: Optional[dict] = None,
    ):
        r"""
3888
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
3889
        """
3890
3891
        lora_layers = {}
        lora_metadata = {}
3892

3893
3894
3895
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
3896

3897
3898
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
3899

3900
        cls._save_lora_weights(
3901
            save_directory=save_directory,
3902
3903
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
3920
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
3933
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
        """
        super().unfuse_lora(components=components, **kwargs)


class SkyReelsV2LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`SkyReelsV2Transformer3DModel`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.WanLoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
3955
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}

        state_dict, metadata = _fetch_state_dict(
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )
        if any(k.startswith("diffusion_model.") for k in state_dict):
            state_dict = _convert_non_diffusers_wan_lora_to_diffusers(state_dict)
        elif any(k.startswith("lora_unet_") for k in state_dict):
            state_dict = _convert_musubi_wan_lora_to_diffusers(state_dict)

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.WanLoraLoaderMixin._maybe_expand_t2v_lora_for_i2v
    def _maybe_expand_t2v_lora_for_i2v(
        cls,
        transformer: torch.nn.Module,
        state_dict,
    ):
        if transformer.config.image_dim is None:
            return state_dict

        target_device = transformer.device

        if any(k.startswith("transformer.blocks.") for k in state_dict):
            num_blocks = len({k.split("blocks.")[1].split(".")[0] for k in state_dict if "blocks." in k})
            is_i2v_lora = any("add_k_proj" in k for k in state_dict) and any("add_v_proj" in k for k in state_dict)
            has_bias = any(".lora_B.bias" in k for k in state_dict)

            if is_i2v_lora:
                return state_dict

            for i in range(num_blocks):
                for o, c in zip(["k_img", "v_img"], ["add_k_proj", "add_v_proj"]):
                    # These keys should exist if the block `i` was part of the T2V LoRA.
                    ref_key_lora_A = f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"
                    ref_key_lora_B = f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"

                    if ref_key_lora_A not in state_dict or ref_key_lora_B not in state_dict:
                        continue

                    state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_A.weight"] = torch.zeros_like(
                        state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"], device=target_device
                    )
                    state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.weight"] = torch.zeros_like(
                        state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"], device=target_device
                    )

                    # If the original LoRA had biases (indicated by has_bias)
                    # AND the specific reference bias key exists for this block.

                    ref_key_lora_B_bias = f"transformer.blocks.{i}.attn2.to_k.lora_B.bias"
                    if has_bias and ref_key_lora_B_bias in state_dict:
                        ref_lora_B_bias_tensor = state_dict[ref_key_lora_B_bias]
                        state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.bias"] = torch.zeros_like(
                            ref_lora_B_bias_tensor,
                            device=target_device,
                        )

        return state_dict

    # Copied from diffusers.loaders.lora_pipeline.WanLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
    ):
        """
4063
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
        # convert T2V LoRA to I2V LoRA (when loaded to Wan I2V) by adding zeros for the additional (missing) _img layers
        state_dict = self._maybe_expand_t2v_lora_for_i2v(
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            state_dict=state_dict,
        )
        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
        load_into_transformer_2 = kwargs.pop("load_into_transformer_2", False)
        if load_into_transformer_2:
            if not hasattr(self, "transformer_2"):
                raise AttributeError(
                    f"'{type(self).__name__}' object has no attribute transformer_2"
                    "Note that Wan2.1 models do not have a transformer_2 component."
                    "Ensure the model has a transformer_2 component before setting load_into_transformer_2=True."
                )
            self.load_lora_into_transformer(
                state_dict,
                transformer=self.transformer_2,
                adapter_name=adapter_name,
                metadata=metadata,
                _pipeline=self,
                low_cpu_mem_usage=low_cpu_mem_usage,
                hotswap=hotswap,
            )
        else:
            self.load_lora_into_transformer(
                state_dict,
                transformer=getattr(self, self.transformer_name)
                if not hasattr(self, "transformer")
                else self.transformer,
                adapter_name=adapter_name,
                metadata=metadata,
                _pipeline=self,
                low_cpu_mem_usage=low_cpu_mem_usage,
                hotswap=hotswap,
            )
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->SkyReelsV2Transformer3DModel
    def load_lora_into_transformer(
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
    ):
        """
4133
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
Aryan's avatar
Aryan committed
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
4146
            metadata=metadata,
Aryan's avatar
Aryan committed
4147
4148
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
4149
            hotswap=hotswap,
Aryan's avatar
Aryan committed
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
4162
        transformer_lora_adapter_metadata: Optional[dict] = None,
Aryan's avatar
Aryan committed
4163
4164
    ):
        r"""
4165
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
Aryan's avatar
Aryan committed
4166
        """
4167
4168
        lora_layers = {}
        lora_metadata = {}
Aryan's avatar
Aryan committed
4169

4170
4171
4172
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
4173

4174
4175
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
Aryan's avatar
Aryan committed
4176

4177
        cls._save_lora_weights(
Aryan's avatar
Aryan committed
4178
            save_directory=save_directory,
4179
4180
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
Aryan's avatar
Aryan committed
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
4197
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
Aryan's avatar
Aryan committed
4198
4199
        """
        super().fuse_lora(
4200
4201
4202
4203
4204
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Aryan's avatar
Aryan committed
4205
4206
4207
4208
4209
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
4210
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
Aryan's avatar
Aryan committed
4211
        """
4212
        super().unfuse_lora(components=components, **kwargs)
Aryan's avatar
Aryan committed
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231


class CogView4LoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`WanTransformer3DModel`]. Specific to [`CogView4Pipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.lora_state_dict
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
4232
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
Aryan's avatar
Aryan committed
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
4245
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
Aryan's avatar
Aryan committed
4246
4247
4248
4249
4250
4251

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

4252
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
Aryan's avatar
Aryan committed
4253

4254
        state_dict, metadata = _fetch_state_dict(
Aryan's avatar
Aryan committed
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

4275
4276
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
Aryan's avatar
Aryan committed
4277
4278
4279

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
4280
4281
4282
4283
4284
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
Aryan's avatar
Aryan committed
4285
4286
    ):
        """
4287
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
Aryan's avatar
Aryan committed
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
4303
4304
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
Aryan's avatar
Aryan committed
4305
4306
4307
4308
4309
4310
4311
4312
4313

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
4314
            metadata=metadata,
Aryan's avatar
Aryan committed
4315
4316
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
4317
            hotswap=hotswap,
Aryan's avatar
Aryan committed
4318
4319
4320
4321
4322
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->CogView4Transformer2DModel
    def load_lora_into_transformer(
4323
4324
4325
4326
4327
4328
4329
4330
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
Aryan's avatar
Aryan committed
4331
4332
    ):
        """
4333
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
Aryan's avatar
Aryan committed
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
4346
            metadata=metadata,
Aryan's avatar
Aryan committed
4347
4348
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
4349
            hotswap=hotswap,
Aryan's avatar
Aryan committed
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
4362
        transformer_lora_adapter_metadata: Optional[dict] = None,
Aryan's avatar
Aryan committed
4363
4364
    ):
        r"""
4365
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
Aryan's avatar
Aryan committed
4366
        """
4367
4368
        lora_layers = {}
        lora_metadata = {}
Aryan's avatar
Aryan committed
4369

4370
4371
4372
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
4373

4374
4375
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
Aryan's avatar
Aryan committed
4376

4377
        cls._save_lora_weights(
Aryan's avatar
Aryan committed
4378
            save_directory=save_directory,
4379
4380
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
Aryan's avatar
Aryan committed
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
4397
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
Aryan's avatar
Aryan committed
4398
4399
        """
        super().fuse_lora(
4400
4401
4402
4403
4404
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
Aryan's avatar
Aryan committed
4405
4406
4407
4408
4409
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
4410
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
Aryan's avatar
Aryan committed
4411
        """
4412
        super().unfuse_lora(components=components, **kwargs)
Aryan's avatar
Aryan committed
4413
4414


4415
4416
4417
4418
4419
class HiDreamImageLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`HiDreamImageTransformer2DModel`]. Specific to [`HiDreamImagePipeline`].
    """

4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
4444
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)
4445
4446
4447
4448
4449
4450

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

4451
        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}
4452

4453
        state_dict, metadata = _fetch_state_dict(
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

4474
4475
4476
4477
        is_non_diffusers_format = any("diffusion_model" in k for k in state_dict)
        if is_non_diffusers_format:
            state_dict = _convert_non_diffusers_hidream_lora_to_diffusers(state_dict)

4478
4479
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
    ):
        """
4490
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
4506
4507
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
4508
4509
4510
4511
4512
4513
4514
4515
4516

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
4517
            metadata=metadata,
4518
4519
4520
4521
4522
4523
4524
4525
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->HiDreamImageTransformer2DModel
    def load_lora_into_transformer(
4526
4527
4528
4529
4530
4531
4532
4533
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
4534
4535
    ):
        """
4536
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
4549
            metadata=metadata,
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
4565
        transformer_lora_adapter_metadata: Optional[dict] = None,
4566
4567
    ):
        r"""
4568
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
4569
        """
4570
4571
        lora_layers = {}
        lora_metadata = {}
4572

4573
4574
4575
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
4576

4577
4578
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
4579

4580
        cls._save_lora_weights(
4581
            save_directory=save_directory,
4582
4583
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
4600
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )

    # Copied from diffusers.loaders.lora_pipeline.SanaLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
4613
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
4614
4615
4616
4617
        """
        super().unfuse_lora(components=components, **kwargs)


4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
class QwenImageLoraLoaderMixin(LoraBaseMixin):
    r"""
    Load LoRA layers into [`QwenImageTransformer2DModel`]. Specific to [`QwenImagePipeline`].
    """

    _lora_loadable_modules = ["transformer"]
    transformer_name = TRANSFORMER_NAME

    @classmethod
    @validate_hf_hub_args
    def lora_state_dict(
        cls,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        **kwargs,
    ):
        r"""
4634
        See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details.
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
        """
        # Load the main state dict first which has the LoRA layers for either of
        # transformer and text encoder or both.
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
        return_lora_metadata = kwargs.pop("return_lora_metadata", False)

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

        user_agent = {"file_type": "attn_procs_weights", "framework": "pytorch"}

        state_dict, metadata = _fetch_state_dict(
            pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
            weight_name=weight_name,
            use_safetensors=use_safetensors,
            local_files_only=local_files_only,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            allow_pickle=allow_pickle,
        )

        is_dora_scale_present = any("dora_scale" in k for k in state_dict)
        if is_dora_scale_present:
            warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
            logger.warning(warn_msg)
            state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

4677
        has_alphas_in_sd = any(k.endswith(".alpha") for k in state_dict)
4678
        has_lora_unet = any(k.startswith("lora_unet_") for k in state_dict)
4679
4680
        has_diffusion_model = any(k.startswith("diffusion_model.") for k in state_dict)
        if has_alphas_in_sd or has_lora_unet or has_diffusion_model:
4681
4682
            state_dict = _convert_non_diffusers_qwen_lora_to_diffusers(state_dict)

4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
        out = (state_dict, metadata) if return_lora_metadata else state_dict
        return out

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
    def load_lora_weights(
        self,
        pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[str] = None,
        hotswap: bool = False,
        **kwargs,
    ):
        """
4695
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for more details.
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # if a dict is passed, copy it instead of modifying it inplace
        if isinstance(pretrained_model_name_or_path_or_dict, dict):
            pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()

        # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
        kwargs["return_lora_metadata"] = True
        state_dict, metadata = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)

        is_correct_format = all("lora" in key for key in state_dict.keys())
        if not is_correct_format:
            raise ValueError("Invalid LoRA checkpoint.")

        self.load_lora_into_transformer(
            state_dict,
            transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
            adapter_name=adapter_name,
            metadata=metadata,
            _pipeline=self,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->QwenImageTransformer2DModel
    def load_lora_into_transformer(
        cls,
        state_dict,
        transformer,
        adapter_name=None,
        _pipeline=None,
        low_cpu_mem_usage=False,
        hotswap: bool = False,
        metadata=None,
    ):
        """
4741
        See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details.
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
        """
        if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
            raise ValueError(
                "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
            )

        # Load the layers corresponding to transformer.
        logger.info(f"Loading {cls.transformer_name}.")
        transformer.load_lora_adapter(
            state_dict,
            network_alphas=None,
            adapter_name=adapter_name,
            metadata=metadata,
            _pipeline=_pipeline,
            low_cpu_mem_usage=low_cpu_mem_usage,
            hotswap=hotswap,
        )

    @classmethod
    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
    def save_lora_weights(
        cls,
        save_directory: Union[str, os.PathLike],
        transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
        transformer_lora_adapter_metadata: Optional[dict] = None,
    ):
        r"""
4773
        See [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for more information.
4774
        """
4775
4776
        lora_layers = {}
        lora_metadata = {}
4777

4778
4779
4780
        if transformer_lora_layers:
            lora_layers[cls.transformer_name] = transformer_lora_layers
            lora_metadata[cls.transformer_name] = transformer_lora_adapter_metadata
4781

4782
4783
        if not lora_layers:
            raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
4784

4785
        cls._save_lora_weights(
4786
            save_directory=save_directory,
4787
4788
            lora_layers=lora_layers,
            lora_metadata=lora_metadata,
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
    def fuse_lora(
        self,
        components: List[str] = ["transformer"],
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
        adapter_names: Optional[List[str]] = None,
        **kwargs,
    ):
        r"""
4805
        See [`~loaders.StableDiffusionLoraLoaderMixin.fuse_lora`] for more details.
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
        """
        super().fuse_lora(
            components=components,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
            adapter_names=adapter_names,
            **kwargs,
        )

    # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
    def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
        r"""
4818
        See [`~loaders.StableDiffusionLoraLoaderMixin.unfuse_lora`] for more details.
4819
4820
4821
4822
        """
        super().unfuse_lora(components=components, **kwargs)


4823
4824
4825
4826
4827
class LoraLoaderMixin(StableDiffusionLoraLoaderMixin):
    def __init__(self, *args, **kwargs):
        deprecation_message = "LoraLoaderMixin is deprecated and this will be removed in a future version. Please use `StableDiffusionLoraLoaderMixin`, instead."
        deprecate("LoraLoaderMixin", "1.0.0", deprecation_message)
        super().__init__(*args, **kwargs)