image_processor.py 20.2 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings
16
from typing import List, Optional, Tuple, Union
YiYi Xu's avatar
YiYi Xu committed
17
18

import numpy as np
Anh71me's avatar
Anh71me committed
19
import PIL.Image
YiYi Xu's avatar
YiYi Xu committed
20
21
22
23
import torch
from PIL import Image

from .configuration_utils import ConfigMixin, register_to_config
24
from .utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
YiYi Xu's avatar
YiYi Xu committed
25
26


27
28
29
30
31
32
33
34
35
36
PipelineImageInput = Union[
    PIL.Image.Image,
    np.ndarray,
    torch.FloatTensor,
    List[PIL.Image.Image],
    List[np.ndarray],
    List[torch.FloatTensor],
]


YiYi Xu's avatar
YiYi Xu committed
37
38
class VaeImageProcessor(ConfigMixin):
    """
Steven Liu's avatar
Steven Liu committed
39
    Image processor for VAE.
YiYi Xu's avatar
YiYi Xu committed
40
41
42

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
43
            Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
Steven Liu's avatar
Steven Liu committed
44
            `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
YiYi Xu's avatar
YiYi Xu committed
45
        vae_scale_factor (`int`, *optional*, defaults to `8`):
Steven Liu's avatar
Steven Liu committed
46
            VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
YiYi Xu's avatar
YiYi Xu committed
47
48
49
        resample (`str`, *optional*, defaults to `lanczos`):
            Resampling filter to use when resizing the image.
        do_normalize (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
50
            Whether to normalize the image to [-1,1].
51
        do_binarize (`bool`, *optional*, defaults to `False`):
52
            Whether to binarize the image to 0/1.
53
54
        do_convert_rgb (`bool`, *optional*, defaults to be `False`):
            Whether to convert the images to RGB format.
55
56
        do_convert_grayscale (`bool`, *optional*, defaults to be `False`):
            Whether to convert the images to grayscale format.
YiYi Xu's avatar
YiYi Xu committed
57
58
59
60
61
62
63
64
65
66
67
    """

    config_name = CONFIG_NAME

    @register_to_config
    def __init__(
        self,
        do_resize: bool = True,
        vae_scale_factor: int = 8,
        resample: str = "lanczos",
        do_normalize: bool = True,
68
        do_binarize: bool = False,
69
        do_convert_rgb: bool = False,
70
        do_convert_grayscale: bool = False,
YiYi Xu's avatar
YiYi Xu committed
71
72
    ):
        super().__init__()
73
74
75
76
77
78
79
        if do_convert_rgb and do_convert_grayscale:
            raise ValueError(
                "`do_convert_rgb` and `do_convert_grayscale` can not both be set to `True`,"
                " if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.",
                " if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`",
            )
            self.config.do_convert_rgb = False
YiYi Xu's avatar
YiYi Xu committed
80
81

    @staticmethod
82
    def numpy_to_pil(images: np.ndarray) -> PIL.Image.Image:
YiYi Xu's avatar
YiYi Xu committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image) for image in images]

        return pil_images

    @staticmethod
98
99
    def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
        """
Steven Liu's avatar
Steven Liu committed
100
        Convert a PIL image or a list of PIL images to NumPy arrays.
101
102
103
104
105
106
107
108
109
110
        """
        if not isinstance(images, list):
            images = [images]
        images = [np.array(image).astype(np.float32) / 255.0 for image in images]
        images = np.stack(images, axis=0)

        return images

    @staticmethod
    def numpy_to_pt(images: np.ndarray) -> torch.FloatTensor:
YiYi Xu's avatar
YiYi Xu committed
111
        """
Steven Liu's avatar
Steven Liu committed
112
        Convert a NumPy image to a PyTorch tensor.
YiYi Xu's avatar
YiYi Xu committed
113
114
115
116
117
118
119
120
        """
        if images.ndim == 3:
            images = images[..., None]

        images = torch.from_numpy(images.transpose(0, 3, 1, 2))
        return images

    @staticmethod
121
    def pt_to_numpy(images: torch.FloatTensor) -> np.ndarray:
YiYi Xu's avatar
YiYi Xu committed
122
        """
Steven Liu's avatar
Steven Liu committed
123
        Convert a PyTorch tensor to a NumPy image.
YiYi Xu's avatar
YiYi Xu committed
124
125
126
127
128
        """
        images = images.cpu().permute(0, 2, 3, 1).float().numpy()
        return images

    @staticmethod
129
    def normalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
YiYi Xu's avatar
YiYi Xu committed
130
        """
Steven Liu's avatar
Steven Liu committed
131
        Normalize an image array to [-1,1].
YiYi Xu's avatar
YiYi Xu committed
132
133
134
        """
        return 2.0 * images - 1.0

135
    @staticmethod
136
    def denormalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
137
        """
Steven Liu's avatar
Steven Liu committed
138
        Denormalize an image array to [0,1].
139
140
141
        """
        return (images / 2 + 0.5).clamp(0, 1)

142
143
144
    @staticmethod
    def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image:
        """
145
        Converts a PIL image to RGB format.
146
147
        """
        image = image.convert("RGB")
148

149
150
        return image

151
152
153
154
155
156
157
158
159
160
    @staticmethod
    def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image:
        """
        Converts a PIL image to grayscale format.
        """
        image = image.convert("L")

        return image

    def get_default_height_width(
161
        self,
162
        image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
163
164
        height: Optional[int] = None,
        width: Optional[int] = None,
165
    ) -> Tuple[int, int]:
YiYi Xu's avatar
YiYi Xu committed
166
        """
167
168
169
170
171
172
173
174
175
176
177
178
        This function return the height and width that are downscaled to the next integer multiple of
        `vae_scale_factor`.

        Args:
            image(`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
                The image input, can be a PIL image, numpy array or pytorch tensor. if it is a numpy array, should have
                shape `[batch, height, width]` or `[batch, height, width, channel]` if it is a pytorch tensor, should
                have shape `[batch, channel, height, width]`.
            height (`int`, *optional*, defaults to `None`):
                The height in preprocessed image. If `None`, will use the height of `image` input.
            width (`int`, *optional*`, defaults to `None`):
                The width in preprocessed. If `None`, will use the width of the `image` input.
YiYi Xu's avatar
YiYi Xu committed
179
        """
180

181
        if height is None:
182
183
184
185
186
187
188
            if isinstance(image, PIL.Image.Image):
                height = image.height
            elif isinstance(image, torch.Tensor):
                height = image.shape[2]
            else:
                height = image.shape[1]

189
        if width is None:
190
191
192
193
194
            if isinstance(image, PIL.Image.Image):
                width = image.width
            elif isinstance(image, torch.Tensor):
                width = image.shape[3]
            else:
195
                width = image.shape[2]
196
197
198
199

        width, height = (
            x - x % self.config.vae_scale_factor for x in (width, height)
        )  # resize to integer multiple of vae_scale_factor
200
201
202
203
204

        return height, width

    def resize(
        self,
205
        image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
206
207
        height: Optional[int] = None,
        width: Optional[int] = None,
208
    ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
209
        """
210
        Resize image.
211
212
213
214
215
216
217
218
219
220
221
222

        Args:
            image (`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
                The image input, can be a PIL image, numpy array or pytorch tensor.
            height (`int`, *optional*, defaults to `None`):
                The height to resize to.
            width (`int`, *optional*`, defaults to `None`):
                The width to resize to.

        Returns:
            `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
                The resized image.
223
        """
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        if isinstance(image, PIL.Image.Image):
            image = image.resize((width, height), resample=PIL_INTERPOLATION[self.config.resample])
        elif isinstance(image, torch.Tensor):
            image = torch.nn.functional.interpolate(
                image,
                size=(height, width),
            )
        elif isinstance(image, np.ndarray):
            image = self.numpy_to_pt(image)
            image = torch.nn.functional.interpolate(
                image,
                size=(height, width),
            )
            image = self.pt_to_numpy(image)
238
        return image
YiYi Xu's avatar
YiYi Xu committed
239

240
241
    def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image:
        """
242
243
244
245
246
247
248
249
250
        Create a mask.

        Args:
            image (`PIL.Image.Image`):
                The image input, should be a PIL image.

        Returns:
            `PIL.Image.Image`:
                The binarized image. Values less than 0.5 are set to 0, values greater than 0.5 are set to 1.
251
252
253
254
255
        """
        image[image < 0.5] = 0
        image[image >= 0.5] = 1
        return image

YiYi Xu's avatar
YiYi Xu committed
256
257
258
    def preprocess(
        self,
        image: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
259
260
        height: Optional[int] = None,
        width: Optional[int] = None,
YiYi Xu's avatar
YiYi Xu committed
261
262
    ) -> torch.Tensor:
        """
Steven Liu's avatar
Steven Liu committed
263
        Preprocess the image input. Accepted formats are PIL images, NumPy arrays or PyTorch tensors.
YiYi Xu's avatar
YiYi Xu committed
264
265
        """
        supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

        # Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
        if self.config.do_convert_grayscale and isinstance(image, (torch.Tensor, np.ndarray)) and image.ndim == 3:
            if isinstance(image, torch.Tensor):
                # if image is a pytorch tensor could have 2 possible shapes:
                #    1. batch x height x width: we should insert the channel dimension at position 1
                #    2. channnel x height x width: we should insert batch dimension at position 0,
                #       however, since both channel and batch dimension has same size 1, it is same to insert at position 1
                #    for simplicity, we insert a dimension of size 1 at position 1 for both cases
                image = image.unsqueeze(1)
            else:
                # if it is a numpy array, it could have 2 possible shapes:
                #   1. batch x height x width: insert channel dimension on last position
                #   2. height x width x channel: insert batch dimension on first position
                if image.shape[-1] == 1:
                    image = np.expand_dims(image, axis=0)
                else:
                    image = np.expand_dims(image, axis=-1)

YiYi Xu's avatar
YiYi Xu committed
285
286
287
288
289
290
291
292
        if isinstance(image, supported_formats):
            image = [image]
        elif not (isinstance(image, list) and all(isinstance(i, supported_formats) for i in image)):
            raise ValueError(
                f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support {', '.join(supported_formats)}"
            )

        if isinstance(image[0], PIL.Image.Image):
293
294
            if self.config.do_convert_rgb:
                image = [self.convert_to_rgb(i) for i in image]
295
296
            elif self.config.do_convert_grayscale:
                image = [self.convert_to_grayscale(i) for i in image]
297
            if self.config.do_resize:
298
                height, width = self.get_default_height_width(image[0], height, width)
299
300
                image = [self.resize(i, height, width) for i in image]
            image = self.pil_to_numpy(image)  # to np
YiYi Xu's avatar
YiYi Xu committed
301
302
303
304
            image = self.numpy_to_pt(image)  # to pt

        elif isinstance(image[0], np.ndarray):
            image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0)
305

YiYi Xu's avatar
YiYi Xu committed
306
            image = self.numpy_to_pt(image)
307
308

            height, width = self.get_default_height_width(image, height, width)
309
310
            if self.config.do_resize:
                image = self.resize(image, height, width)
YiYi Xu's avatar
YiYi Xu committed
311
312
313

        elif isinstance(image[0], torch.Tensor):
            image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)
314

315
316
317
318
            if self.config.do_convert_grayscale and image.ndim == 3:
                image = image.unsqueeze(1)

            channel = image.shape[1]
319
320
321
322
            # don't need any preprocess if the image is latents
            if channel == 4:
                return image

323
            height, width = self.get_default_height_width(image, height, width)
324
325
            if self.config.do_resize:
                image = self.resize(image, height, width)
YiYi Xu's avatar
YiYi Xu committed
326
327

        # expected range [0,1], normalize to [-1,1]
328
        do_normalize = self.config.do_normalize
329
        if image.min() < 0 and do_normalize:
YiYi Xu's avatar
YiYi Xu committed
330
331
332
333
334
335
336
337
338
339
            warnings.warn(
                "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
                f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
                FutureWarning,
            )
            do_normalize = False

        if do_normalize:
            image = self.normalize(image)

340
341
342
        if self.config.do_binarize:
            image = self.binarize(image)

YiYi Xu's avatar
YiYi Xu committed
343
344
345
346
        return image

    def postprocess(
        self,
347
        image: torch.FloatTensor,
YiYi Xu's avatar
YiYi Xu committed
348
        output_type: str = "pil",
349
        do_denormalize: Optional[List[bool]] = None,
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
    ) -> Union[PIL.Image.Image, np.ndarray, torch.FloatTensor]:
        """
        Postprocess the image output from tensor to `output_type`.

        Args:
            image (`torch.FloatTensor`):
                The image input, should be a pytorch tensor with shape `B x C x H x W`.
            output_type (`str`, *optional*, defaults to `pil`):
                The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
            do_denormalize (`List[bool]`, *optional*, defaults to `None`):
                Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
                `VaeImageProcessor` config.

        Returns:
            `PIL.Image.Image`, `np.ndarray` or `torch.FloatTensor`:
                The postprocessed image.
        """
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
        if not isinstance(image, torch.Tensor):
            raise ValueError(
                f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
            )
        if output_type not in ["latent", "pt", "np", "pil"]:
            deprecation_message = (
                f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
                "`pil`, `np`, `pt`, `latent`"
            )
            deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
            output_type = "np"

        if output_type == "latent":
            return image

        if do_denormalize is None:
            do_denormalize = [self.config.do_normalize] * image.shape[0]

        image = torch.stack(
            [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
        )

        if output_type == "pt":
YiYi Xu's avatar
YiYi Xu committed
390
391
392
393
394
395
            return image

        image = self.pt_to_numpy(image)

        if output_type == "np":
            return image
396
397

        if output_type == "pil":
YiYi Xu's avatar
YiYi Xu committed
398
            return self.numpy_to_pil(image)
estelleafl's avatar
estelleafl committed
399
400
401
402


class VaeImageProcessorLDM3D(VaeImageProcessor):
    """
Steven Liu's avatar
Steven Liu committed
403
    Image processor for VAE LDM3D.
estelleafl's avatar
estelleafl committed
404
405
406
407
408

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
        vae_scale_factor (`int`, *optional*, defaults to `8`):
Steven Liu's avatar
Steven Liu committed
409
            VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
estelleafl's avatar
estelleafl committed
410
411
412
        resample (`str`, *optional*, defaults to `lanczos`):
            Resampling filter to use when resizing the image.
        do_normalize (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
413
            Whether to normalize the image to [-1,1].
estelleafl's avatar
estelleafl committed
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
    """

    config_name = CONFIG_NAME

    @register_to_config
    def __init__(
        self,
        do_resize: bool = True,
        vae_scale_factor: int = 8,
        resample: str = "lanczos",
        do_normalize: bool = True,
    ):
        super().__init__()

    @staticmethod
429
    def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
estelleafl's avatar
estelleafl committed
430
        """
Steven Liu's avatar
Steven Liu committed
431
        Convert a NumPy image or a batch of images to a PIL image.
estelleafl's avatar
estelleafl committed
432
433
434
435
436
437
438
439
440
441
442
443
444
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image[:, :, :3]) for image in images]

        return pil_images

    @staticmethod
445
    def rgblike_to_depthmap(image: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
estelleafl's avatar
estelleafl committed
446
447
448
449
450
451
452
453
454
        """
        Args:
            image: RGB-like depth image

        Returns: depth map

        """
        return image[:, :, 1] * 2**8 + image[:, :, 2]

455
    def numpy_to_depth(self, images: np.ndarray) -> List[PIL.Image.Image]:
estelleafl's avatar
estelleafl committed
456
        """
Steven Liu's avatar
Steven Liu committed
457
        Convert a NumPy depth image or a batch of images to a PIL image.
estelleafl's avatar
estelleafl committed
458
459
460
        """
        if images.ndim == 3:
            images = images[None, ...]
461
462
463
464
465
466
467
468
469
        images_depth = images[:, :, :, 3:]
        if images.shape[-1] == 6:
            images_depth = (images_depth * 255).round().astype("uint8")
            pil_images = [
                Image.fromarray(self.rgblike_to_depthmap(image_depth), mode="I;16") for image_depth in images_depth
            ]
        elif images.shape[-1] == 4:
            images_depth = (images_depth * 65535.0).astype(np.uint16)
            pil_images = [Image.fromarray(image_depth, mode="I;16") for image_depth in images_depth]
estelleafl's avatar
estelleafl committed
470
        else:
471
            raise Exception("Not supported")
estelleafl's avatar
estelleafl committed
472
473
474
475
476
477
478
479

        return pil_images

    def postprocess(
        self,
        image: torch.FloatTensor,
        output_type: str = "pil",
        do_denormalize: Optional[List[bool]] = None,
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
    ) -> Union[PIL.Image.Image, np.ndarray, torch.FloatTensor]:
        """
        Postprocess the image output from tensor to `output_type`.

        Args:
            image (`torch.FloatTensor`):
                The image input, should be a pytorch tensor with shape `B x C x H x W`.
            output_type (`str`, *optional*, defaults to `pil`):
                The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
            do_denormalize (`List[bool]`, *optional*, defaults to `None`):
                Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
                `VaeImageProcessor` config.

        Returns:
            `PIL.Image.Image`, `np.ndarray` or `torch.FloatTensor`:
                The postprocessed image.
        """
estelleafl's avatar
estelleafl committed
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
        if not isinstance(image, torch.Tensor):
            raise ValueError(
                f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
            )
        if output_type not in ["latent", "pt", "np", "pil"]:
            deprecation_message = (
                f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
                "`pil`, `np`, `pt`, `latent`"
            )
            deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
            output_type = "np"

        if do_denormalize is None:
            do_denormalize = [self.config.do_normalize] * image.shape[0]

        image = torch.stack(
            [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
        )

        image = self.pt_to_numpy(image)

        if output_type == "np":
519
520
521
522
523
            if image.shape[-1] == 6:
                image_depth = np.stack([self.rgblike_to_depthmap(im[:, :, 3:]) for im in image], axis=0)
            else:
                image_depth = image[:, :, :, 3:]
            return image[:, :, :, :3], image_depth
estelleafl's avatar
estelleafl committed
524
525
526
527
528

        if output_type == "pil":
            return self.numpy_to_pil(image), self.numpy_to_depth(image)
        else:
            raise Exception(f"This type {output_type} is not supported")