mixtral.py 15.8 KB
Newer Older
Pierre Stock's avatar
Pierre Stock committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Mixtral model."""
Woosuk Kwon's avatar
Woosuk Kwon committed
24
from typing import List, Optional, Tuple
Pierre Stock's avatar
Pierre Stock committed
25
26
27
28
29
30
31

import numpy as np

import torch
import torch.nn.functional as F

from torch import nn
32
from transformers import MixtralConfig
Pierre Stock's avatar
Pierre Stock committed
33
34
35
36
37

from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (LinearMethodBase,
38
                                               ReplicatedLinear,
Pierre Stock's avatar
Pierre Stock committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
                                               QKVParallelLinear,
                                               RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
    VocabParallelEmbedding, ParallelLMHead)
from vllm.model_executor.parallel_utils.communication_op import (
    tensor_model_parallel_all_reduce)
from vllm.model_executor.parallel_utils.parallel_state import (
    get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
                                              hf_model_weights_iterator)
from vllm.sequence import SamplerOutput

KVCache = Tuple[torch.Tensor, torch.Tensor]


57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
class MixtralMLP(nn.Module):

    def __init__(
        self,
        num_experts: int,
        hidden_size: int,
        intermediate_size: int,
        linear_method: Optional[LinearMethodBase] = None,
    ) -> None:
        super().__init__()
        self.num_experts = num_experts
        self.ffn_dim = intermediate_size
        self.hidden_dim = hidden_size

        self.w1 = ReplicatedLinear(self.hidden_dim,
                                   self.ffn_dim,
                                   bias=False,
                                   linear_method=linear_method)
        self.w2 = ReplicatedLinear(self.ffn_dim,
                                   self.hidden_dim,
                                   bias=False,
                                   linear_method=linear_method)
        self.w3 = ReplicatedLinear(self.hidden_dim,
                                   self.ffn_dim,
                                   bias=False,
                                   linear_method=linear_method)

        # TODO: Use vllm's SiluAndMul
        self.act_fn = nn.SiLU()

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        w1_out, _ = self.w1(hidden_states)
        w1_out = self.act_fn(w1_out)
        w3_out, _ = self.w3(hidden_states)
        current_hidden_states = w1_out * w3_out
        current_hidden_states, _ = self.w2(current_hidden_states)
        return current_hidden_states


class MixtralMoE(nn.Module):

    def __init__(
        self,
        config: MixtralConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        self.config = config
        self.rank = get_tensor_model_parallel_rank()
        self.tp_size = get_tensor_model_parallel_world_size()
        self.num_total_experts = config.num_local_experts
        self.top_k = config.num_experts_per_tok
        if self.tp_size > self.num_total_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {self.num_total_experts}.")
        # Split experts equally between ranks
        self.expert_indicies = np.array_split(range(
            self.num_total_experts), self.tp_size)[self.rank].tolist()
        if not self.expert_indicies:
            raise ValueError(
                f"Rank {self.rank} has no experts assigned to it.")

        self.experts = nn.ModuleList([
            MixtralMLP(self.num_total_experts,
                       config.hidden_size,
                       config.intermediate_size,
                       linear_method=linear_method)
125
            if idx in self.expert_indicies else None
126
127
128
129
130
            for idx in range(self.num_total_experts)
        ])
        self.gate = ReplicatedLinear(config.hidden_size,
                                     self.num_total_experts,
                                     bias=False,
CHU Tianxiang's avatar
CHU Tianxiang committed
131
                                     linear_method=None)
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        batch_size, sequence_length, hidden_dim = hidden_states.shape
        hidden_states = hidden_states.view(-1, hidden_dim)
        # router_logits: (batch * sequence_length, n_experts)
        router_logits, _ = self.gate(hidden_states)

        routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
        routing_weights, selected_experts = torch.topk(routing_weights,
                                                       self.top_k,
                                                       dim=-1)
        routing_weights /= routing_weights.sum(dim=-1, keepdim=True)

        final_hidden_states = None
        for expert_idx in self.expert_indicies:
            expert_layer = self.experts[expert_idx]
            expert_mask = (selected_experts == expert_idx)
            expert_weights = (routing_weights * expert_mask).sum(dim=-1,
                                                                 keepdim=True)

            current_hidden_states = expert_layer(hidden_states).mul_(
                expert_weights)
            if final_hidden_states is None:
                final_hidden_states = current_hidden_states
            else:
                final_hidden_states.add_(current_hidden_states)

        return tensor_model_parallel_all_reduce(final_hidden_states).view(
            batch_size, sequence_length, hidden_dim)
Pierre Stock's avatar
Pierre Stock committed
161
162
163
164
165
166
167
168
169
170


class MixtralAttention(nn.Module):

    def __init__(self,
                 hidden_size: int,
                 num_heads: int,
                 num_kv_heads: int,
                 max_position: int = 4096 * 32,
                 rope_theta: float = 10000,
171
                 linear_method: Optional[LinearMethodBase] = None,
Pierre Stock's avatar
Pierre Stock committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
                 sliding_window: Optional[int] = None) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.head_dim = hidden_size // self.total_num_heads
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta
        self.sliding_window = sliding_window

196
        self.qkv_proj = QKVParallelLinear(
Pierre Stock's avatar
Pierre Stock committed
197
198
199
200
201
            hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=False,
202
            linear_method=linear_method,
Pierre Stock's avatar
Pierre Stock committed
203
        )
204
        self.o_proj = RowParallelLinear(
Pierre Stock's avatar
Pierre Stock committed
205
206
207
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
208
            linear_method=linear_method,
Pierre Stock's avatar
Pierre Stock committed
209
210
211
212
213
214
        )
        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position,
            base=int(self.rope_theta),
215
            is_neox_style=True,
Pierre Stock's avatar
Pierre Stock committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
        )
        self.attn = PagedAttention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            sliding_window=self.sliding_window,
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
232
        qkv, _ = self.qkv_proj(hidden_states)
Pierre Stock's avatar
Pierre Stock committed
233
234
235
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self.rotary_emb(positions, q, k)
        k_cache, v_cache = kv_cache
236
        attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
237
        output, _ = self.o_proj(attn_output)
Pierre Stock's avatar
Pierre Stock committed
238
239
240
241
242
243
244
        return output


class MixtralDecoderLayer(nn.Module):

    def __init__(
        self,
245
        config: MixtralConfig,
246
        linear_method: Optional[LinearMethodBase] = None,
Pierre Stock's avatar
Pierre Stock committed
247
248
249
250
251
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        # Requires transformers > 4.32.0
        rope_theta = getattr(config, "rope_theta", 10000)
252
        self.self_attn = MixtralAttention(
Pierre Stock's avatar
Pierre Stock committed
253
254
255
256
257
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            max_position=config.max_position_embeddings,
            num_kv_heads=config.num_key_value_heads,
            rope_theta=rope_theta,
258
259
260
261
262
263
264
265
            sliding_window=config.sliding_window,
            linear_method=linear_method)
        self.block_sparse_moe = MixtralMoE(config=config,
                                           linear_method=linear_method)
        self.input_layernorm = RMSNorm(config.hidden_size,
                                       eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(config.hidden_size,
                                                eps=config.rms_norm_eps)
Pierre Stock's avatar
Pierre Stock committed
266
267
268
269

    def forward(
        self,
        positions: torch.Tensor,
270
        hidden_states: torch.Tensor,
Pierre Stock's avatar
Pierre Stock committed
271
272
        kv_cache: KVCache,
        input_metadata: InputMetadata,
273
        residual: Optional[torch.Tensor],
Pierre Stock's avatar
Pierre Stock committed
274
    ) -> torch.Tensor:
275
276
277
278
279
280
281
282
        # Self Attention
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(
                hidden_states, residual)
        hidden_states = self.self_attn(
Pierre Stock's avatar
Pierre Stock committed
283
            positions=positions,
284
            hidden_states=hidden_states,
Pierre Stock's avatar
Pierre Stock committed
285
286
287
288
            kv_cache=kv_cache,
            input_metadata=input_metadata,
        )

289
290
291
292
293
        # Fully Connected
        hidden_states, residual = self.post_attention_layernorm(
            hidden_states, residual)
        hidden_states = self.block_sparse_moe(hidden_states)
        return hidden_states, residual
Pierre Stock's avatar
Pierre Stock committed
294

295
296

class MixtralModel(nn.Module):
Pierre Stock's avatar
Pierre Stock committed
297
298
299

    def __init__(
        self,
300
        config: MixtralConfig,
Pierre Stock's avatar
Pierre Stock committed
301
302
303
304
305
        linear_method: Optional[LinearMethodBase] = None,
    ) -> None:
        super().__init__()
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
306
307

        self.embed_tokens = VocabParallelEmbedding(
Pierre Stock's avatar
Pierre Stock committed
308
309
310
311
            config.vocab_size,
            config.hidden_size,
        )
        self.layers = nn.ModuleList([
312
            MixtralDecoderLayer(config, linear_method=linear_method)
Pierre Stock's avatar
Pierre Stock committed
313
314
            for _ in range(config.num_hidden_layers)
        ])
315
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
Pierre Stock's avatar
Pierre Stock committed
316
317
318
319
320
321
322

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
323
    ) -> torch.Tensor:
324
325
        hidden_states = self.embed_tokens(input_ids)
        residual = None
Pierre Stock's avatar
Pierre Stock committed
326
327
        for i in range(len(self.layers)):
            layer = self.layers[i]
328
329
            hidden_states, residual = layer(positions, hidden_states,
                                            kv_caches[i], input_metadata,
330
                                            residual)
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
        hidden_states, _ = self.norm(hidden_states, residual)
        return hidden_states


class MixtralForCausalLM(nn.Module):

    def __init__(
        self,
        config: MixtralConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ) -> None:
        super().__init__()
        self.config = config
        self.linear_method = linear_method
        self.model = MixtralModel(config, linear_method)
        self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
        self.sampler = Sampler(config.vocab_size)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        hidden_states = self.model(input_ids, positions, kv_caches,
357
                                   input_metadata)
Pierre Stock's avatar
Pierre Stock committed
358
359
360
361
362
363
        return hidden_states

    def sample(
        self,
        hidden_states: Optional[torch.Tensor],
        sampling_metadata: SamplingMetadata,
364
    ) -> Optional[SamplerOutput]:
365
        next_tokens = self.sampler(self.lm_head.weight, hidden_states,
Pierre Stock's avatar
Pierre Stock committed
366
367
368
369
370
371
372
373
374
375
                                   sampling_metadata)
        return next_tokens

    def load_weights(self,
                     model_name_or_path: str,
                     cache_dir: Optional[str] = None,
                     load_format: str = "auto",
                     revision: Optional[str] = None):
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
376
377
378
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
Pierre Stock's avatar
Pierre Stock committed
379
        ]
380

Pierre Stock's avatar
Pierre Stock committed
381
382
        params_dict = dict(self.named_parameters())
        for name, loaded_weight in hf_model_weights_iterator(
Roy's avatar
Roy committed
383
384
385
386
387
                model_name_or_path,
                cache_dir,
                load_format,
                revision,
                fall_back_to_pt=False):
Pierre Stock's avatar
Pierre Stock committed
388
389
390
391
392
            if "rotary_emb.inv_freq" in name:
                continue
            for (param_name, weight_name, shard_id) in stacked_params_mapping:
                if weight_name not in name:
                    continue
CHU Tianxiang's avatar
CHU Tianxiang committed
393
394
395
396
397
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
Pierre Stock's avatar
Pierre Stock committed
398
399
400
401
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
CHU Tianxiang's avatar
CHU Tianxiang committed
402
403
404
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
405
406
407
408
                # Skip experts that are not assigned to this worker.
                if ("block_sparse_moe.experts." in name
                        and name not in params_dict):
                    continue
Pierre Stock's avatar
Pierre Stock committed
409
410
411
412
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                weight_loader(param, loaded_weight)