mixtral.py 20.3 KB
Newer Older
Pierre Stock's avatar
Pierre Stock committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Mixtral model."""
Woosuk Kwon's avatar
Woosuk Kwon committed
24
from typing import List, Optional, Tuple
Pierre Stock's avatar
Pierre Stock committed
25
26
27
28
29
30
31

import numpy as np

import torch
import torch.nn.functional as F

from torch import nn
32
from transformers import MixtralConfig
Pierre Stock's avatar
Pierre Stock committed
33
34
35

try:
    import megablocks.ops as ops
36
37
38
except ImportError as e:
    raise ImportError("MegaBlocks not found. "
                      "Please install it by `pip install megablocks`.") from e
Pierre Stock's avatar
Pierre Stock committed
39
40
try:
    import stk
41
42
43
44
except ImportError as e:
    raise ImportError(
        "STK not found. "
        "Please install it by `pip install stanford-stk`.") from e
Pierre Stock's avatar
Pierre Stock committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.attention import PagedAttention
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (LinearMethodBase,
                                               QKVParallelLinear,
                                               RowParallelLinear)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
    VocabParallelEmbedding, ParallelLMHead)
from vllm.model_executor.parallel_utils.communication_op import (
    tensor_model_parallel_all_reduce)
from vllm.model_executor.parallel_utils.parallel_state import (
    get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.weight_utils import (default_weight_loader,
                                              hf_model_weights_iterator)
from vllm.model_executor.utils import set_weight_attrs
from vllm.sequence import SamplerOutput

KVCache = Tuple[torch.Tensor, torch.Tensor]


def promote_scalar(x: torch.Tensor) -> torch.Tensor:
    return x.view(1) if len(x.size()) == 0 else x


class MixtralAttention(nn.Module):

    def __init__(self,
                 hidden_size: int,
                 num_heads: int,
                 num_kv_heads: int,
                 max_position: int = 4096 * 32,
                 rope_theta: float = 10000,
                 sliding_window: Optional[int] = None) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.head_dim = hidden_size // self.total_num_heads
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta
        self.sliding_window = sliding_window

        self.wqkv = QKVParallelLinear(
            hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=False,
        )
        self.wo = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
        )
        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position,
            base=int(self.rope_theta),
            is_neox_style=False,  # weights not in HF format
        )
        self.attn = PagedAttention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            sliding_window=self.sliding_window,
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
        qkv, _ = self.wqkv(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self.rotary_emb(positions, q, k)
        k_cache, v_cache = kv_cache
        attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata,
                                cache_event)
        output, _ = self.wo(attn_output)
        return output


class BlockSparseMoE(nn.Module):
    """
    Built on the paper and library Megablocks as described in
    https://arxiv.org/abs/2211.15841. This implementation is
    strictly equivalent to standard MoE with full capacity (no
    dropped tokens). It's faster since it formulates MoE operations
    in terms of block-sparse operations to accomodate imbalanced
    assignments of tokens to experts, whereas standard MoE either
    (1) drop tokens at the cost of reduced performance or (2) set
    capacity factor to number of experts and thus waste computation
    and memory on padding.
    """

    def __init__(self, hidden_dim: int, ffn_dim: int, num_experts: int,
                 top_k: int):
        super().__init__()
        self.hidden_dim = hidden_dim
        self.ffn_dim = ffn_dim
        self.num_experts = num_experts
        self.top_k = top_k

        # gating
        self.gate = nn.Linear(self.hidden_dim,
                              self.num_experts,
                              bias=False,
                              device=torch.cuda.current_device())

        tp_size = get_tensor_model_parallel_world_size()
        assert self.ffn_dim % tp_size == 0
        self.ffn_dim_per_partition = self.ffn_dim // tp_size
        # merged expert weights, all of size  (ffn_dim * n_experts, model_dim)
        self.w1 = nn.Parameter(
            torch.empty(self.ffn_dim_per_partition * self.num_experts,
                        self.hidden_dim,
                        device=torch.cuda.current_device()))
        set_weight_attrs(self.w1, {"weight_loader": self.moe_weight_loader})
        self.w2 = nn.Parameter(
            torch.empty(self.ffn_dim_per_partition * self.num_experts,
                        self.hidden_dim,
                        device=torch.cuda.current_device()))
        set_weight_attrs(self.w2, {"weight_loader": self.moe_weight_loader})
        self.w3 = nn.Parameter(
            torch.empty(self.ffn_dim_per_partition * self.num_experts,
                        self.hidden_dim,
                        device=torch.cuda.current_device()))
        set_weight_attrs(self.w3, {"weight_loader": self.moe_weight_loader})

        # Calculate the number of bits needed to represent the expert indices
        # so that we can pass it to radix sort.
        self.sort_end_bit = max(int(np.ceil(np.log2(self.num_experts))), 1)
        self.blocking = 128
        self.quantize_scatter_num_bits = -1

        # Calculate the number of bits needed to represent the column indices
        # in the intermediate sparse matrix.
        max_column_index = (self.ffn_dim * self.num_experts) // self.blocking
        self.transpose_sort_end_bit = max(
            int(np.ceil(np.log2(max_column_index))), 1)

    def moe_weight_loader(self, param: nn.Parameter,
                          loaded_weight: torch.Tensor) -> None:
        """
        Load the weights for the MoE linear layer.
        """
        tp_rank = get_tensor_model_parallel_rank()
        shard_size = self.ffn_dim_per_partition
        loaded_weight = loaded_weight.view(self.num_experts, self.ffn_dim, -1)
        loaded_weight = loaded_weight[:, shard_size * tp_rank:shard_size *
                                      (tp_rank + 1)]
        loaded_weight = loaded_weight.reshape_as(param)
        param.data.copy_(loaded_weight)

    def sparse_transpose(
            self, size: int, row_indices,
            column_indices) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        block_columns = size[1] // self.blocking

        # Sort row indices by column indices to get the transposed matrix's
        # column indices.
        #
        # NOTE: Our sort operation uses the same width indices as the input
        # values. To avoid overflow when we have large activation matrices
        # we cast to 32-bit before sorting.
        _, gather_indices = ops.sort(column_indices.int(),
                                     self.transpose_sort_end_bit)

        # There are a constant number of blocks in every row of the sparse
        # matrix. A blocks offset is:
        #
        # row_index * blocks_per_row + column_index % blocks_per_row
        #
        # Once we have the block offsets ordered for transposition we can
        # divide by blocks_per_row to get the transposed column indices.
        column_indices_t = row_indices.gather(0, gather_indices.long())
        block_offsets_t = gather_indices.int()

        zero = torch.zeros((1, ), dtype=torch.int32, device=row_indices.device)
        nnz_per_column = ops.histogram(column_indices, block_columns)
        nnz_per_column = ops.inclusive_cumsum(nnz_per_column, 0)
        offsets_t = torch.cat([zero, nnz_per_column])
        return column_indices_t, offsets_t, block_offsets_t

    def topology(self, x: torch.Tensor,
253
                 padded_bins: torch.Tensor) -> "stk.Matrix":
Pierre Stock's avatar
Pierre Stock committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        padded_tokens, _ = x.size()
        assert padded_tokens % self.blocking == 0
        assert self.ffn_dim_per_partition % self.blocking == 0

        # Offsets for the sparse matrix. All rows have the
        # same number of nonzero blocks dictated by the
        # dimensionality of a single expert.
        block_rows = padded_tokens // self.blocking
        blocks_per_row = self.ffn_dim_per_partition // self.blocking
        offsets = torch.arange(
            0,
            block_rows * blocks_per_row + 1,
            blocks_per_row,
            dtype=torch.int32,
            device=x.device,
        )

        # Indices for the sparse matrix. The indices for
        # the intermediate matrix are dynamic depending
        # on the mapping of tokens to experts.
        column_indices = ops.topology(padded_bins, self.blocking, block_rows,
                                      blocks_per_row)

        # TODO(tgale): This is unused. Remove the need for this in stk.
        # For now, use meta init to save the device memory.
        data = torch.empty(
            column_indices.numel(),
            self.blocking,
            self.blocking,
            dtype=x.dtype,
            device="meta",
        )
        shape = (padded_tokens, self.ffn_dim_per_partition * self.num_experts)
        row_indices = stk.ops.row_indices(shape, data, offsets, column_indices)
        column_indices_t, offsets_t, block_offsets_t = self.sparse_transpose(
            shape, row_indices, column_indices)
        return stk.Matrix(
            shape,
            data,
            row_indices,
            column_indices,
            offsets,
            column_indices_t,
            offsets_t,
            block_offsets_t,
        )

    def indices_and_padded_bins(
        self, selected_experts: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor,
               torch.Tensor]:
        # Sort the expert ids to produce the scatter/gather
        # indices for the permutation.
        selected_experts = selected_experts.int()
        bin_ids, indices = ops.sort(selected_experts, self.sort_end_bit)

        # Histogram the expert ids to identify the number of
        # tokens routed to each expert.
        tokens_per_expert = ops.histogram(selected_experts, self.num_experts)

        # Round the token counts up to the block size used in
        # the matrix muliplications. Caculate the starting
        # position of each bin.
        padded_tokens_per_expert = ops.round_up(tokens_per_expert,
                                                self.blocking)
        padded_bins = ops.inclusive_cumsum(padded_tokens_per_expert, 0)
        padded_bins = promote_scalar(padded_bins)

        # Calculate the bin bounds for the sorted tokens.
        bins = ops.inclusive_cumsum(tokens_per_expert, 0)
        bins = promote_scalar(bins)
        return indices, bin_ids, bins, padded_bins, tokens_per_expert

    @torch.inference_mode()
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        x: (sequence_length, model_dim)
        gate_logits: (sequence_length, n_experts)
        """
        # optional reshape
        input_shape = x.shape
        x = x.view(-1, input_shape[-1])

        # gate_logits: (sequence_length, n_experts)
        gate_logits = self.gate(x)
        # all_probs: (sequence_length, n_experts) and upcast for softmax
        all_probs = F.softmax(gate_logits, dim=1, dtype=torch.float)
        # weights, selected_experts: (sequence_length, top-k)
        weights, selected_experts = torch.topk(all_probs, self.top_k, dim=-1)
        weights /= weights.sum(dim=-1, keepdim=True)
        weights = weights.flatten().to(x.dtype)
        selected_experts = selected_experts.flatten()

        (indices, bin_ids, bins, padded_bins,
         _) = self.indices_and_padded_bins(selected_experts)

        # Permute tokens and pad to prepare expert computation
        # (top_k * sequence_length + padding, model_dim)
        x = ops.padded_gather(x, indices, bin_ids, bins, padded_bins,
                              self.top_k)

        # Create the sparse matrix topology
        with torch.no_grad():
            topo = self.topology(x, padded_bins)

        # Perform the expert computation
        # First Dense x Dense -> Sparse for w1 and w3,
        # (top_k * sequence_length + padding, ffn_dim * n_experts)
        x = stk.Matrix(
            topo.size(),
            F.silu(stk.ops.sdd(x, self.w1.t(), topo).data) *
            stk.ops.sdd(x, self.w3.t(), topo).data,
            topo.row_indices,
            topo.column_indices,
            topo.offsets,
            topo.column_indices_t,
            topo.offsets_t,
            topo.block_offsets_t,
        )

        # Then Sparse x Dense -> Dense for w2
        # (top_k * sequence_length + padding, model_dim)
        x = stk.ops.dsd(x, self.w2)

        x = tensor_model_parallel_all_reduce(x)

        # Permute back and remove padding
        # (top_k * sequence_length, model_dim)
        x = ops.padded_scatter(
            x,
            indices,
            bin_ids,
            weights,
            bins,
            padded_bins,
            self.top_k,
            self.quantize_scatter_num_bits,
        )
        return x.view(*input_shape)


class MixtralDecoderLayer(nn.Module):

    def __init__(
        self,
399
        config: MixtralConfig,
Pierre Stock's avatar
Pierre Stock committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        # Requires transformers > 4.32.0
        rope_theta = getattr(config, "rope_theta", 10000)
        self.attention = MixtralAttention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            max_position=config.max_position_embeddings,
            num_kv_heads=config.num_key_value_heads,
            rope_theta=rope_theta,
            sliding_window=config.sliding_window)
        self.block_sparse_moe = BlockSparseMoE(
            hidden_dim=self.hidden_size,
            ffn_dim=config.intermediate_size,
            num_experts=config.num_local_experts,
            top_k=config.num_experts_per_tok,
        )
        self.attention_norm = RMSNorm(config.hidden_size,
                                      eps=config.rms_norm_eps)
        self.ffn_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        positions: torch.Tensor,
        x: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
        r = self.attention(
            positions=positions,
            hidden_states=self.attention_norm(x),
            kv_cache=kv_cache,
            input_metadata=input_metadata,
            cache_event=cache_event,
        )
        h = x + r
        r = self.block_sparse_moe(self.ffn_norm(h))
        out = h + r
        return out


class MixtralForCausalLM(nn.Module):

    def __init__(
        self,
447
        config: MixtralConfig,
Pierre Stock's avatar
Pierre Stock committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
        linear_method: Optional[LinearMethodBase] = None,
    ) -> None:
        super().__init__()
        self.config = config
        assert linear_method is None
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
        self.tok_embeddings = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
        )

        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.output = ParallelLMHead(config.vocab_size, config.hidden_size)
        self.sampler = Sampler(config.vocab_size)

        self.layers = nn.ModuleList([
            MixtralDecoderLayer(config)
            for _ in range(config.num_hidden_layers)
        ])

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
    ) -> SamplerOutput:
        hidden_states = self.tok_embeddings(input_ids)

        # forward
        for i in range(len(self.layers)):
            cache_event = None if cache_events is None else cache_events[i]
            layer = self.layers[i]
            hidden_states = layer(
                positions,
                hidden_states,
                kv_caches[i],
                input_metadata,
                cache_event,
            )
Woosuk Kwon's avatar
Woosuk Kwon committed
490
        hidden_states = self.norm(hidden_states)
Pierre Stock's avatar
Pierre Stock committed
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
        return hidden_states

    def sample(
        self,
        hidden_states: Optional[torch.Tensor],
        sampling_metadata: SamplingMetadata,
    ) -> SamplerOutput:
        next_tokens = self.sampler(self.output.weight, hidden_states,
                                   sampling_metadata)
        return next_tokens

    def load_weights(self,
                     model_name_or_path: str,
                     cache_dir: Optional[str] = None,
                     load_format: str = "auto",
                     revision: Optional[str] = None):
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("wqkv", "wq", "q"),
            ("wqkv", "wk", "k"),
            ("wqkv", "wv", "v"),
        ]
        params_dict = dict(self.named_parameters())
        for name, loaded_weight in hf_model_weights_iterator(
                model_name_or_path, cache_dir, load_format, revision):
            if "rotary_emb.inv_freq" in name:
                continue
            for (param_name, weight_name, shard_id) in stacked_params_mapping:
                if weight_name not in name:
                    continue
                param = params_dict[name.replace(weight_name, param_name)]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                weight_loader(param, loaded_weight)