sampler.py 15.6 KB
Newer Older
1
"""A layer that samples the next tokens from the model's outputs."""
Woosuk Kwon's avatar
Woosuk Kwon committed
2
3
from typing import Dict, List, Tuple

4
import numpy as np
Woosuk Kwon's avatar
Woosuk Kwon committed
5
6
7
import torch
import torch.nn as nn

8
9
10
from cacheflow.model_executor.input_metadata import InputMetadata
from cacheflow.model_executor.parallel_utils.tensor_parallel import (
    gather_from_tensor_model_parallel_region)
11
12
from cacheflow.sampling_params import SamplingParams
from cacheflow.sequence import SequenceOutputs
Woosuk Kwon's avatar
Woosuk Kwon committed
13

Woosuk Kwon's avatar
Minor  
Woosuk Kwon committed
14

Woosuk Kwon's avatar
Woosuk Kwon committed
15
class Sampler(nn.Module):
16
17
18
19
20
21
22
23
24
25
26
27
28
    """Samples the next tokens from the model's outputs.

    This layer does the following:
    1. Discard the hidden states that are not used for sampling (i.e., all
        tokens except the final one in each prompt).
    2. Compute the logits for the next tokens.
    3. Apply presence and frequency penalties.
    4. Apply temperature scaling.
    5. Apply top-p and top-k truncation.
    6. Sample the next tokens.
    Here, each sequence group within the batch can have different sampling
    parameters (e.g., sampling method, temperature, top-p, top-k, etc.).
    """
Woosuk Kwon's avatar
Woosuk Kwon committed
29

Woosuk Kwon's avatar
Woosuk Kwon committed
30
    def __init__(self, vocab_size: int) -> None:
31
        super().__init__()
Woosuk Kwon's avatar
Woosuk Kwon committed
32
        self.vocab_size = vocab_size
Woosuk Kwon's avatar
Woosuk Kwon committed
33
34
35

    def forward(
        self,
Woosuk Kwon's avatar
Woosuk Kwon committed
36
        embedding: torch.Tensor,
Woosuk Kwon's avatar
Woosuk Kwon committed
37
38
        hidden_states: torch.Tensor,
        input_metadata: InputMetadata,
39
40
41
    ) -> Dict[int, SequenceOutputs]:
        # Get the hidden states that we use for sampling.
        hidden_states = _prune_hidden_states(hidden_states, input_metadata)
Woosuk Kwon's avatar
Woosuk Kwon committed
42
43

        # Get the logits for the next tokens.
Woosuk Kwon's avatar
Woosuk Kwon committed
44
        logits = torch.matmul(hidden_states, embedding.t())
Zhuohan Li's avatar
Zhuohan Li committed
45
        logits = gather_from_tensor_model_parallel_region(logits)
46
        # Remove paddings in vocab (if any).
Woosuk Kwon's avatar
Woosuk Kwon committed
47
        logits = logits[:, :self.vocab_size]
Woosuk Kwon's avatar
Woosuk Kwon committed
48

49
50
51
52
53
54
55
56
57
58
        # Apply presence and frequency penalties.
        output_tokens = _get_output_tokens(input_metadata)
        assert len(output_tokens) == logits.shape[0]
        presence_penalties, frequency_penalties = _get_penalties(input_metadata)
        assert len(presence_penalties) == logits.shape[0]
        assert len(frequency_penalties) == logits.shape[0]
        logits = _apply_penalties(
            logits, output_tokens, presence_penalties, frequency_penalties,
            self.vocab_size)

59
60
61
62
63
64
65
66
67
        # Apply temperature scaling.
        temperatures = _get_temperatures(input_metadata)
        assert len(temperatures) == logits.shape[0]
        if any(t != 1.0 for t in temperatures):
            t = torch.tensor(
                temperatures, dtype=logits.dtype, device=logits.device)
            # Use in-place division to avoid creating a new tensor.
            logits.div_(t.unsqueeze(dim=1))

68
        # We use float32 for probabilities and log probabilities.
69
70
        # Compute the probabilities.
        probs = torch.softmax(logits, dim=-1, dtype=torch.float)
71
        # Compute the log probabilities (before applying top-p and top-k).
72
        logprobs = torch.log(probs)
73

Woosuk Kwon's avatar
Woosuk Kwon committed
74
75
76
77
        # Apply top-p and top-k truncation.
        top_ps, top_ks = _get_top_p_top_k(input_metadata, self.vocab_size)
        assert len(top_ps) == len(top_ks) == probs.shape[0]
        if any(p < 1.0 for p in top_ps) or any(k != -1 for k in top_ks):
78
            probs = _apply_top_p_top_k(probs, top_ps, top_ks)
79

Woosuk Kwon's avatar
Woosuk Kwon committed
80
        # Sample the next tokens.
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        return _sample(probs, logprobs, input_metadata)


def _prune_hidden_states(
    hidden_states: torch.Tensor,
    input_metadata: InputMetadata,
) -> torch.Tensor:
    start_idx = 0
    last_token_indicies: List[int] = []
    for prompt_len in input_metadata.prompt_lens:
        last_token_indicies.append(start_idx + prompt_len - 1)
        start_idx += prompt_len
    last_token_indicies.extend(
        range(start_idx, start_idx + input_metadata.num_generation_tokens))
    return hidden_states[last_token_indicies]


98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
def _get_penalties(
    input_metadata: InputMetadata,
) -> Tuple[List[float], List[float]]:
    # Collect the presence and frequency penalties.
    presence_penalties: List[float] = []
    frequency_penalties: List[float] = []
    for i, seq_group in enumerate(input_metadata.seq_groups):
        seq_ids, sampling_params = seq_group
        p = sampling_params.presence_penalty
        f = sampling_params.frequency_penalty
        if i < input_metadata.num_prompts:
            # A prompt input.
            presence_penalties.append(p)
            frequency_penalties.append(f)
        else:
            # A generation token.
            presence_penalties += [p] * len(seq_ids)
            frequency_penalties += [f] * len(seq_ids)
    return presence_penalties, frequency_penalties


def _get_output_tokens(
    input_metadata: InputMetadata,
) -> List[List[int]]:
    output_tokens: List[List[int]] = []
    for i, seq_group in enumerate(input_metadata.seq_groups):
        seq_ids, _ = seq_group
        if i < input_metadata.num_prompts:
            # A prompt input.
            # NOTE: While the prompt input usually has no output tokens,
            # it may have output tokens in the case of recomputation.
            seq_id = seq_ids[0]
            seq_data = input_metadata.seq_data[seq_id]
            output_tokens.append(seq_data.output_token_ids)
        else:
            # A generation token.
            for seq_id in seq_ids:
                seq_data = input_metadata.seq_data[seq_id]
                output_tokens.append(seq_data.output_token_ids)
    return output_tokens


def _apply_penalties(
    logits: torch.Tensor,
    output_tokens: List[List[int]],
    presence_penalties: List[float],
    frequency_penalties: List[float],
    vocab_size: int,
) -> torch.Tensor:
    num_seqs = logits.shape[0]
    # Collect the indices of sequences that have non-zero penalties.
    indices = []
    for i in range(num_seqs):
        if not output_tokens[i]:
            continue
        p = presence_penalties[i]
        f = frequency_penalties[i]
        if p == 0.0 and f == 0.0:
            continue
        indices.append(i)

    # Return early if all sequences have zero penalties.
    if not indices:
        return logits

    bin_counts = []
    for i in indices:
        bin_counts.append(np.bincount(output_tokens[i], minlength=vocab_size))
    bin_counts = np.stack(bin_counts, axis=0)
    bin_counts = torch.from_numpy(bin_counts).to(dtype=logits.dtype,
                                                 device=logits.device)

    frequency_penalties = [frequency_penalties[i] for i in indices]
    frequency_penalties = torch.tensor(
        frequency_penalties, dtype=logits.dtype, device=logits.device)
    presence_penalties = [presence_penalties[i] for i in indices]
    presence_penalties = torch.tensor(
        presence_penalties, dtype=logits.dtype, device=logits.device)

    # We follow the definition in OpenAI API.
    # Refer to https://platform.openai.com/docs/api-reference/parameter-details
    logits[indices] -= frequency_penalties.unsqueeze(dim=1) * bin_counts
    presence_mask = (bin_counts > 0.0).to(dtype=logits.dtype)
    logits[indices] -= presence_penalties.unsqueeze(dim=1) * presence_mask
    return logits


185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
def _get_temperatures(
    input_metadata: InputMetadata,
) -> List[float]:
    # Collect the temperatures for the logits.
    temperatures: List[float] = []
    for i, seq_group in enumerate(input_metadata.seq_groups):
        seq_ids, sampling_params = seq_group
        temperature = sampling_params.temperature
        if temperature == 0.0:
            # NOTE: Zero temperature means deterministic sampling
            # (i.e., greedy sampling or beam search).
            # Set the temperature to 1 to avoid division by zero.
            temperature = 1.0

        if i < input_metadata.num_prompts:
            # A prompt input.
            temperatures.append(temperature)
        else:
            # A generation token.
            temperatures += [temperature] * len(seq_ids)
    return temperatures


Woosuk Kwon's avatar
Woosuk Kwon committed
208
def _get_top_p_top_k(
209
    input_metadata: InputMetadata,
Woosuk Kwon's avatar
Woosuk Kwon committed
210
211
    vocab_size: int,
) -> Tuple[List[float], List[int]]:
212
    top_ps: List[float] = []
Woosuk Kwon's avatar
Woosuk Kwon committed
213
    top_ks: List[int] = []
214
215
    for i, seq_group in enumerate(input_metadata.seq_groups):
        seq_ids, sampling_params = seq_group
Woosuk Kwon's avatar
Woosuk Kwon committed
216
217
218
219
220
        top_p = sampling_params.top_p
        # k should not be greater than the vocab size.
        top_k = min(sampling_params.top_k, vocab_size)
        # k=-1 means no truncation.
        top_k = vocab_size if top_k == -1 else top_k
221
222
        if i < input_metadata.num_prompts:
            # A prompt input.
Woosuk Kwon's avatar
Woosuk Kwon committed
223
224
            top_ps.append(top_p)
            top_ks.append(top_k)
225
226
        else:
            # A generation token.
Woosuk Kwon's avatar
Woosuk Kwon committed
227
228
229
            top_ps += [top_p] * len(seq_ids)
            top_ks += [top_k] * len(seq_ids)
    return top_ps, top_ks
230
231


Woosuk Kwon's avatar
Woosuk Kwon committed
232
def _apply_top_p_top_k(
233
    probs: torch.Tensor,
234
235
    top_ps: List[float],
    top_ks: List[int],
236
) -> torch.Tensor:
237
238
    p = torch.tensor(top_ps, dtype=probs.dtype, device=probs.device)
    k = torch.tensor(top_ks, dtype=torch.int, device=probs.device)
239
    probs_sort, probs_idx = probs.sort(dim=-1, descending=True)
Woosuk Kwon's avatar
Woosuk Kwon committed
240
241

    # Apply top-p.
242
    probs_sum = torch.cumsum(probs_sort, dim=-1)
Woosuk Kwon's avatar
Woosuk Kwon committed
243
244
245
246
247
248
249
250
251
252
253
    top_p_mask = (probs_sum - probs_sort) > p.unsqueeze(dim=1)
    probs_sort[top_p_mask] = 0.0

    # Apply top-k.
    # Create a mask for the top-k elements.
    top_k_mask = torch.arange(probs_idx.shape[-1], device=probs_idx.device)
    top_k_mask = top_k_mask.expand(probs_idx.shape[0], -1)
    top_k_mask = top_k_mask >= k.unsqueeze(dim=1)
    probs_sort[top_k_mask] = 0.0

    # Re-sort the probabilities.
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    probs = torch.gather(
        probs_sort, dim=-1, index=torch.argsort(probs_idx, dim=-1))
    return probs


def _get_topk_logprobs(
    logprobs: torch.Tensor,
    num_logprobs: int,
) -> Dict[int, float]:
    if num_logprobs == 0:
        return {}

    topk_logprobs, topk_ids = torch.topk(logprobs, num_logprobs)
    if num_logprobs == 1:
        topk_logprobs = [topk_logprobs.item()]
        topk_ids = [topk_ids.item()]
    else:
        topk_logprobs = topk_logprobs.tolist()
        topk_ids = topk_ids.tolist()

    token_to_logprob: Dict[int, float] = {}
    for token_id, logprob in zip(topk_ids, topk_logprobs):
        token_to_logprob[token_id] = logprob
    return token_to_logprob


def _sample_from_prompt(
    prob: torch.Tensor,
    sampling_params: SamplingParams,
) -> List[int]:
    if sampling_params.use_beam_search:
        # Beam search.
        beam_width = sampling_params.n
        _, next_token_ids = torch.topk(prob, beam_width)
        next_token_ids = next_token_ids.tolist()
    elif sampling_params.temperature == 0.0:
        # Greedy sampling.
        assert sampling_params.n == 1
        next_token_id = torch.argmax(prob)
        next_token_ids = [next_token_id.item()]
    else:
Woosuk Kwon's avatar
Woosuk Kwon committed
295
        # Random sampling.
296
297
298
299
        # Sample n tokens for the prompt.
        n = sampling_params.n
        next_token_ids = torch.multinomial(
            prob, num_samples=n, replacement=True)
Woosuk Kwon's avatar
Woosuk Kwon committed
300
        next_token_ids = next_token_ids.tolist()
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    return next_token_ids


def _sample_from_generation_tokens(
    seq_ids: List[int],
    probs: torch.Tensor,
    logprobs: torch.Tensor,
    seq_logprobs: List[float],
    sampling_params: SamplingParams,
) -> Tuple[List[int], List[int]]:
    # NOTE(woosuk): sampling_params.n can be greater than
    # len(seq_ids) because some sequences in the group might have
    # been already terminated.
    if sampling_params.use_beam_search:
        # Beam search.
        # Add cumulative logprobs for the sequences in the group.
        seq_logprobs = torch.tensor(
            seq_logprobs, dtype=torch.float, device=logprobs.device)
        logprobs = logprobs + seq_logprobs.unsqueeze(dim=1)

        vocab_size = logprobs.size(-1)
        beam_width = len(seq_ids)
        _, topk_ids = torch.topk(logprobs.flatten(), beam_width)
324
325
        topk_ids = topk_ids.tolist()
        seq_idx = [i // vocab_size for i in topk_ids]
326
        beam_seq_ids = [seq_ids[i] for i in seq_idx]
327
        token_ids = [i % vocab_size for i in topk_ids]
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

        beam_outputs: Dict[int, Tuple[int, int]] = {}
        outstanding_beams: List[Tuple[int, int]] = []
        # If a beam survives, continue with it.
        for seq_id, token_id in zip(beam_seq_ids, token_ids):
            if seq_id not in beam_outputs:
                beam_outputs[seq_id] = (seq_id, token_id)
            else:
                outstanding_beams.append((seq_id, token_id))

        # If a beam is discarded, fork another beam.
        for seq_id in seq_ids:
            if seq_id not in beam_outputs:
                beam_outputs[seq_id] = outstanding_beams.pop()
        assert not outstanding_beams

        parent_seq_ids = [beam_outputs[seq_id][0] for seq_id in seq_ids]
        next_token_ids = [beam_outputs[seq_id][1] for seq_id in seq_ids]
    elif sampling_params.temperature == 0.0:
        # Greedy sampling.
        assert len(seq_ids) == 1
        next_token_id = torch.argmax(probs, dim=-1)
        next_token_ids = [next_token_id.item()]
        parent_seq_ids = seq_ids
    else:
Woosuk Kwon's avatar
Woosuk Kwon committed
353
        # Random sampling.
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
        # Sample 1 token for each sequence in the group.
        next_token_ids = torch.multinomial(
            probs, num_samples=1, replacement=True)
        next_token_ids = next_token_ids.squeeze(dim=-1).tolist()
        parent_seq_ids = seq_ids
    return parent_seq_ids, next_token_ids


def _sample(
    probs: torch.Tensor,
    logprobs: torch.Tensor,
    input_metadata: InputMetadata,
) -> Dict[int, SequenceOutputs]:
    seq_outputs: Dict[int, SequenceOutputs] = {}

    # TODO(woosuk): Optimize.
    idx = 0
    for i, seq_group in enumerate(input_metadata.seq_groups):
        seq_ids, sampling_params = seq_group
        if i < input_metadata.num_prompts:
            # Generate the next tokens for a prompt input.
            assert len(seq_ids) == sampling_params.n
            prob = probs[idx]
            logprob = logprobs[idx]
            idx += 1

            # Sample the next tokens.
            next_token_ids = _sample_from_prompt(prob, sampling_params)
            # Get top-k log probabilities for the next tokens.
            next_logprobs = _get_topk_logprobs(
Woosuk Kwon's avatar
Woosuk Kwon committed
384
                logprob, sampling_params.logprobs)
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

            # Build the output.
            for seq_id, next_token_id in zip(seq_ids, next_token_ids):
                output_logprobs = next_logprobs.copy()
                output_logprobs[next_token_id] = logprob[next_token_id].item()
                seq_outputs[seq_id] = SequenceOutputs(
                    seq_id, seq_id, next_token_id, output_logprobs)
        else:
            # Generate the next tokens for generation tokens.
            prob = probs[idx:idx + len(seq_ids)]
            logprob = logprobs[idx:idx + len(seq_ids)]
            idx += len(seq_ids)

            # Sample the next tokens.
            seq_logprobs = [
400
401
                input_metadata.seq_data[seq_id].cumulative_logprobs
                for seq_id in seq_ids]
402
403
404
405
406
407
408
            parent_seq_ids, next_token_ids = _sample_from_generation_tokens(
                seq_ids, prob, logprob, seq_logprobs, sampling_params)

            # Get top-k log probabilities for the next tokens.
            next_logprobs: Dict[int, Dict[int, float]] = {}
            for i, seq_id in enumerate(seq_ids):
                next_logprobs[seq_id] = _get_topk_logprobs(
Woosuk Kwon's avatar
Woosuk Kwon committed
409
                    logprob[i], sampling_params.logprobs)
410
411
412
413
414
415
416
417
418
419
420
421
422

            # Build the output.
            for seq_id, parent_seq_id, next_token_id in zip(
                seq_ids, parent_seq_ids, next_token_ids):
                i = seq_ids.index(parent_seq_id)
                output_logprobs = next_logprobs[parent_seq_id].copy()
                output_logprobs[next_token_id] = logprob[i, next_token_id].item()
                seq_outputs[seq_id] = SequenceOutputs(
                    seq_id,
                    parent_seq_id,
                    next_token_id,
                    output_logprobs,
                )
Woosuk Kwon's avatar
Woosuk Kwon committed
423

424
    return seq_outputs