sampler.py 11.3 KB
Newer Older
Woosuk Kwon's avatar
Woosuk Kwon committed
1
2
3
4
5
from typing import Dict, List, Tuple

import torch
import torch.nn as nn

6
7
8
from cacheflow.model_executor.input_metadata import InputMetadata
from cacheflow.model_executor.parallel_utils.tensor_parallel import (
    gather_from_tensor_model_parallel_region)
9
10
from cacheflow.sampling_params import SamplingParams
from cacheflow.sequence import SequenceOutputs
Woosuk Kwon's avatar
Woosuk Kwon committed
11

Woosuk Kwon's avatar
Minor  
Woosuk Kwon committed
12

Woosuk Kwon's avatar
Woosuk Kwon committed
13
14
class Sampler(nn.Module):

Woosuk Kwon's avatar
Woosuk Kwon committed
15
    def __init__(self, vocab_size: int) -> None:
16
        super().__init__()
Woosuk Kwon's avatar
Woosuk Kwon committed
17
        self.vocab_size = vocab_size
Woosuk Kwon's avatar
Woosuk Kwon committed
18
19
20

    def forward(
        self,
Woosuk Kwon's avatar
Woosuk Kwon committed
21
        embedding: torch.Tensor,
Woosuk Kwon's avatar
Woosuk Kwon committed
22
23
        hidden_states: torch.Tensor,
        input_metadata: InputMetadata,
24
25
26
    ) -> Dict[int, SequenceOutputs]:
        # Get the hidden states that we use for sampling.
        hidden_states = _prune_hidden_states(hidden_states, input_metadata)
Woosuk Kwon's avatar
Woosuk Kwon committed
27
28

        # Get the logits for the next tokens.
Woosuk Kwon's avatar
Woosuk Kwon committed
29
        logits = torch.matmul(hidden_states, embedding.t())
Zhuohan Li's avatar
Zhuohan Li committed
30
        logits = gather_from_tensor_model_parallel_region(logits)
31
        # Remove paddings in vocab (if any).
Woosuk Kwon's avatar
Woosuk Kwon committed
32
        logits = logits[:, :self.vocab_size]
Woosuk Kwon's avatar
Woosuk Kwon committed
33

34
35
36
37
38
39
40
41
42
        # Apply temperature scaling.
        temperatures = _get_temperatures(input_metadata)
        assert len(temperatures) == logits.shape[0]
        if any(t != 1.0 for t in temperatures):
            t = torch.tensor(
                temperatures, dtype=logits.dtype, device=logits.device)
            # Use in-place division to avoid creating a new tensor.
            logits.div_(t.unsqueeze(dim=1))

43
        # We use float32 for probabilities and log probabilities.
44
45
46
        # Compute the probabilities.
        probs = torch.softmax(logits, dim=-1, dtype=torch.float)
        # Compute the log probabilities (before applying top-p).
47
        logprobs = torch.log(probs)
48

Woosuk Kwon's avatar
Woosuk Kwon committed
49
50
51
52
        # Apply top-p and top-k truncation.
        top_ps, top_ks = _get_top_p_top_k(input_metadata, self.vocab_size)
        assert len(top_ps) == len(top_ks) == probs.shape[0]
        if any(p < 1.0 for p in top_ps) or any(k != -1 for k in top_ks):
53
            p = torch.tensor(top_ps, dtype=probs.dtype, device=probs.device)
Woosuk Kwon's avatar
Woosuk Kwon committed
54
55
            k = torch.tensor(top_ks, dtype=torch.int, device=probs.device)
            probs = _apply_top_p_top_k(probs, p, k)
56

Woosuk Kwon's avatar
Woosuk Kwon committed
57
        # Sample the next tokens.
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        return _sample(probs, logprobs, input_metadata)


def _prune_hidden_states(
    hidden_states: torch.Tensor,
    input_metadata: InputMetadata,
) -> torch.Tensor:
    start_idx = 0
    last_token_indicies: List[int] = []
    for prompt_len in input_metadata.prompt_lens:
        last_token_indicies.append(start_idx + prompt_len - 1)
        start_idx += prompt_len
    last_token_indicies.extend(
        range(start_idx, start_idx + input_metadata.num_generation_tokens))
    return hidden_states[last_token_indicies]


def _get_temperatures(
    input_metadata: InputMetadata,
) -> List[float]:
    # Collect the temperatures for the logits.
    temperatures: List[float] = []
    for i, seq_group in enumerate(input_metadata.seq_groups):
        seq_ids, sampling_params = seq_group
        temperature = sampling_params.temperature
        if temperature == 0.0:
            # NOTE: Zero temperature means deterministic sampling
            # (i.e., greedy sampling or beam search).
            # Set the temperature to 1 to avoid division by zero.
            temperature = 1.0

        if i < input_metadata.num_prompts:
            # A prompt input.
            temperatures.append(temperature)
        else:
            # A generation token.
            temperatures += [temperature] * len(seq_ids)
    return temperatures


Woosuk Kwon's avatar
Woosuk Kwon committed
98
def _get_top_p_top_k(
99
    input_metadata: InputMetadata,
Woosuk Kwon's avatar
Woosuk Kwon committed
100
101
    vocab_size: int,
) -> Tuple[List[float], List[int]]:
102
    top_ps: List[float] = []
Woosuk Kwon's avatar
Woosuk Kwon committed
103
    top_ks: List[int] = []
104
105
    for i, seq_group in enumerate(input_metadata.seq_groups):
        seq_ids, sampling_params = seq_group
Woosuk Kwon's avatar
Woosuk Kwon committed
106
107
108
109
110
        top_p = sampling_params.top_p
        # k should not be greater than the vocab size.
        top_k = min(sampling_params.top_k, vocab_size)
        # k=-1 means no truncation.
        top_k = vocab_size if top_k == -1 else top_k
111
112
        if i < input_metadata.num_prompts:
            # A prompt input.
Woosuk Kwon's avatar
Woosuk Kwon committed
113
114
            top_ps.append(top_p)
            top_ks.append(top_k)
115
116
        else:
            # A generation token.
Woosuk Kwon's avatar
Woosuk Kwon committed
117
118
119
            top_ps += [top_p] * len(seq_ids)
            top_ks += [top_k] * len(seq_ids)
    return top_ps, top_ks
120
121


Woosuk Kwon's avatar
Woosuk Kwon committed
122
def _apply_top_p_top_k(
123
124
    probs: torch.Tensor,
    p: torch.Tensor,
Woosuk Kwon's avatar
Woosuk Kwon committed
125
    k: torch.Tensor,
126
127
128
) -> torch.Tensor:
    # TODO(woosuk): Optimize.
    probs_sort, probs_idx = probs.sort(dim=-1, descending=True)
Woosuk Kwon's avatar
Woosuk Kwon committed
129
130

    # Apply top-p.
131
    probs_sum = torch.cumsum(probs_sort, dim=-1)
Woosuk Kwon's avatar
Woosuk Kwon committed
132
133
134
135
136
137
138
139
140
141
142
    top_p_mask = (probs_sum - probs_sort) > p.unsqueeze(dim=1)
    probs_sort[top_p_mask] = 0.0

    # Apply top-k.
    # Create a mask for the top-k elements.
    top_k_mask = torch.arange(probs_idx.shape[-1], device=probs_idx.device)
    top_k_mask = top_k_mask.expand(probs_idx.shape[0], -1)
    top_k_mask = top_k_mask >= k.unsqueeze(dim=1)
    probs_sort[top_k_mask] = 0.0

    # Re-sort the probabilities.
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    probs = torch.gather(
        probs_sort, dim=-1, index=torch.argsort(probs_idx, dim=-1))
    return probs


def _get_topk_logprobs(
    logprobs: torch.Tensor,
    num_logprobs: int,
) -> Dict[int, float]:
    if num_logprobs == 0:
        return {}

    topk_logprobs, topk_ids = torch.topk(logprobs, num_logprobs)
    if num_logprobs == 1:
        topk_logprobs = [topk_logprobs.item()]
        topk_ids = [topk_ids.item()]
    else:
        topk_logprobs = topk_logprobs.tolist()
        topk_ids = topk_ids.tolist()

    token_to_logprob: Dict[int, float] = {}
    for token_id, logprob in zip(topk_ids, topk_logprobs):
        token_to_logprob[token_id] = logprob
    return token_to_logprob


def _sample_from_prompt(
    prob: torch.Tensor,
    sampling_params: SamplingParams,
) -> List[int]:
    if sampling_params.use_beam_search:
        # Beam search.
        beam_width = sampling_params.n
        _, next_token_ids = torch.topk(prob, beam_width)
        next_token_ids = next_token_ids.tolist()
    elif sampling_params.temperature == 0.0:
        # Greedy sampling.
        assert sampling_params.n == 1
        next_token_id = torch.argmax(prob)
        next_token_ids = [next_token_id.item()]
    else:
Woosuk Kwon's avatar
Woosuk Kwon committed
184
        # Random sampling.
185
186
187
188
        # Sample n tokens for the prompt.
        n = sampling_params.n
        next_token_ids = torch.multinomial(
            prob, num_samples=n, replacement=True)
Woosuk Kwon's avatar
Woosuk Kwon committed
189
        next_token_ids = next_token_ids.tolist()
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    return next_token_ids


def _sample_from_generation_tokens(
    seq_ids: List[int],
    probs: torch.Tensor,
    logprobs: torch.Tensor,
    seq_logprobs: List[float],
    sampling_params: SamplingParams,
) -> Tuple[List[int], List[int]]:
    # NOTE(woosuk): sampling_params.n can be greater than
    # len(seq_ids) because some sequences in the group might have
    # been already terminated.
    if sampling_params.use_beam_search:
        # Beam search.
        # Add cumulative logprobs for the sequences in the group.
        seq_logprobs = torch.tensor(
            seq_logprobs, dtype=torch.float, device=logprobs.device)
        logprobs = logprobs + seq_logprobs.unsqueeze(dim=1)

        vocab_size = logprobs.size(-1)
        beam_width = len(seq_ids)
        _, topk_ids = torch.topk(logprobs.flatten(), beam_width)
213
214
        topk_ids = topk_ids.tolist()
        seq_idx = [i // vocab_size for i in topk_ids]
215
        beam_seq_ids = [seq_ids[i] for i in seq_idx]
216
        token_ids = [i % vocab_size for i in topk_ids]
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

        beam_outputs: Dict[int, Tuple[int, int]] = {}
        outstanding_beams: List[Tuple[int, int]] = []
        # If a beam survives, continue with it.
        for seq_id, token_id in zip(beam_seq_ids, token_ids):
            if seq_id not in beam_outputs:
                beam_outputs[seq_id] = (seq_id, token_id)
            else:
                outstanding_beams.append((seq_id, token_id))

        # If a beam is discarded, fork another beam.
        for seq_id in seq_ids:
            if seq_id not in beam_outputs:
                beam_outputs[seq_id] = outstanding_beams.pop()
        assert not outstanding_beams

        parent_seq_ids = [beam_outputs[seq_id][0] for seq_id in seq_ids]
        next_token_ids = [beam_outputs[seq_id][1] for seq_id in seq_ids]
    elif sampling_params.temperature == 0.0:
        # Greedy sampling.
        assert len(seq_ids) == 1
        next_token_id = torch.argmax(probs, dim=-1)
        next_token_ids = [next_token_id.item()]
        parent_seq_ids = seq_ids
    else:
Woosuk Kwon's avatar
Woosuk Kwon committed
242
        # Random sampling.
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
        # Sample 1 token for each sequence in the group.
        next_token_ids = torch.multinomial(
            probs, num_samples=1, replacement=True)
        next_token_ids = next_token_ids.squeeze(dim=-1).tolist()
        parent_seq_ids = seq_ids
    return parent_seq_ids, next_token_ids


def _sample(
    probs: torch.Tensor,
    logprobs: torch.Tensor,
    input_metadata: InputMetadata,
) -> Dict[int, SequenceOutputs]:
    seq_outputs: Dict[int, SequenceOutputs] = {}

    # TODO(woosuk): Optimize.
    idx = 0
    for i, seq_group in enumerate(input_metadata.seq_groups):
        seq_ids, sampling_params = seq_group
        if i < input_metadata.num_prompts:
            # Generate the next tokens for a prompt input.
            assert len(seq_ids) == sampling_params.n
            prob = probs[idx]
            logprob = logprobs[idx]
            idx += 1

            # Sample the next tokens.
            next_token_ids = _sample_from_prompt(prob, sampling_params)
            # Get top-k log probabilities for the next tokens.
            next_logprobs = _get_topk_logprobs(
                logprob, sampling_params.num_logprobs)

            # Build the output.
            for seq_id, next_token_id in zip(seq_ids, next_token_ids):
                output_logprobs = next_logprobs.copy()
                output_logprobs[next_token_id] = logprob[next_token_id].item()
                seq_outputs[seq_id] = SequenceOutputs(
                    seq_id, seq_id, next_token_id, output_logprobs)
        else:
            # Generate the next tokens for generation tokens.
            prob = probs[idx:idx + len(seq_ids)]
            logprob = logprobs[idx:idx + len(seq_ids)]
            idx += len(seq_ids)

            # Sample the next tokens.
            seq_logprobs = [
                input_metadata.seq_logprobs[seq_id] for seq_id in seq_ids]
            parent_seq_ids, next_token_ids = _sample_from_generation_tokens(
                seq_ids, prob, logprob, seq_logprobs, sampling_params)

            # Get top-k log probabilities for the next tokens.
            next_logprobs: Dict[int, Dict[int, float]] = {}
            for i, seq_id in enumerate(seq_ids):
                next_logprobs[seq_id] = _get_topk_logprobs(
                    logprob[i], sampling_params.num_logprobs)

            # Build the output.
            for seq_id, parent_seq_id, next_token_id in zip(
                seq_ids, parent_seq_ids, next_token_ids):
                i = seq_ids.index(parent_seq_id)
                output_logprobs = next_logprobs[parent_seq_id].copy()
                output_logprobs[next_token_id] = logprob[i, next_token_id].item()
                seq_outputs[seq_id] = SequenceOutputs(
                    seq_id,
                    parent_seq_id,
                    next_token_id,
                    output_logprobs,
                )
Woosuk Kwon's avatar
Woosuk Kwon committed
311

312
    return seq_outputs