benchmark_paged_attention.py 6.94 KB
Newer Older
1
from typing import Optional
2
3
4
5
6
7
import argparse
import random
import time

import torch

8
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, create_kv_caches_with_random
9
from vllm._C import ops
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

NUM_BLOCKS = 1024
PARTITION_SIZE = 512


@torch.inference_mode()
def main(
    version: str,
    num_seqs: int,
    context_len: int,
    num_query_heads: int,
    num_kv_heads: int,
    head_size: int,
    use_alibi: bool,
    block_size: int,
    dtype: torch.dtype,
    seed: int,
    do_profile: bool,
28
    device: str = "cuda",
29
    kv_cache_dtype: Optional[str] = None,
30
31
32
) -> None:
    random.seed(seed)
    torch.random.manual_seed(seed)
33
34
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
35
36
37
38
39
40

    scale = float(1.0 / (head_size**0.5))
    query = torch.empty(num_seqs,
                        num_query_heads,
                        head_size,
                        dtype=dtype,
41
                        device=device)
42
43
44
45
46
47
48
    query.uniform_(-scale, scale)

    assert num_query_heads % num_kv_heads == 0
    alibi_slopes = None
    if use_alibi:
        alibi_slopes = torch.randn(num_query_heads,
                                   dtype=torch.float,
49
                                   device=device)
50
51
52

    context_lens = [context_len for _ in range(num_seqs)]
    max_context_len = max(context_lens)
53
    context_lens = torch.tensor(context_lens, dtype=torch.int, device=device)
54
55
56
57
58
59
60
61
62
63

    # Create the block tables.
    max_num_blocks_per_seq = (max_context_len + block_size - 1) // block_size
    block_tables = []
    for _ in range(num_seqs):
        block_table = [
            random.randint(0, NUM_BLOCKS - 1)
            for _ in range(max_num_blocks_per_seq)
        ]
        block_tables.append(block_table)
64
    block_tables = torch.tensor(block_tables, dtype=torch.int, device=device)
65
66

    # Create the KV cache.
67
68
69
70
71
72
73
74
    key_caches, value_caches = create_kv_caches_with_random(NUM_BLOCKS,
                                                            block_size,
                                                            1,
                                                            num_kv_heads,
                                                            head_size,
                                                            kv_cache_dtype,
                                                            dtype,
                                                            device=device)
75
    key_cache, value_cache = key_caches[0], value_caches[0]
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

    # Prepare for the paged attention kernel.
    output = torch.empty_like(query)
    if version == "v2":
        num_partitions = ((max_context_len + PARTITION_SIZE - 1) //
                          PARTITION_SIZE)
        tmp_output = torch.empty(
            size=(num_seqs, num_query_heads, num_partitions, head_size),
            dtype=output.dtype,
            device=output.device,
        )
        exp_sums = torch.empty(
            size=(num_seqs, num_query_heads, num_partitions),
            dtype=torch.float32,
            device=output.device,
        )
        max_logits = torch.empty_like(exp_sums)

94
    def run_cuda_benchmark(num_iters: int, profile: bool = False) -> float:
95
96
97
98
99
100
101
        torch.cuda.synchronize()
        if profile:
            torch.cuda.cudart().cudaProfilerStart()
        start_time = time.perf_counter()

        for _ in range(num_iters):
            if version == "v1":
102
                ops.paged_attention_v1(
103
104
105
106
                    output,
                    query,
                    key_cache,
                    value_cache,
107
                    num_kv_heads,
108
109
110
111
112
113
                    scale,
                    block_tables,
                    context_lens,
                    block_size,
                    max_context_len,
                    alibi_slopes,
114
                    kv_cache_dtype,
115
116
                )
            elif version == "v2":
117
                ops.paged_attention_v2(
118
119
120
121
122
123
124
                    output,
                    exp_sums,
                    max_logits,
                    tmp_output,
                    query,
                    key_cache,
                    value_cache,
125
                    num_kv_heads,
126
127
128
129
130
131
                    scale,
                    block_tables,
                    context_lens,
                    block_size,
                    max_context_len,
                    alibi_slopes,
132
                    kv_cache_dtype,
133
134
135
136
137
138
139
140
141
142
143
144
                )
            else:
                raise ValueError(f"Invalid version: {version}")
        torch.cuda.synchronize()

        end_time = time.perf_counter()
        if profile:
            torch.cuda.cudart().cudaProfilerStart()
        return (end_time - start_time) / num_iters

    # Warmup.
    print("Warming up...")
145
    run_benchmark = run_cuda_benchmark
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    run_benchmark(num_iters=3, profile=False)

    # Benchmark.
    if do_profile:
        latency = run_benchmark(num_iters=1, profile=True)
    else:
        latency = run_benchmark(num_iters=100, profile=False)
    print(f"Kernel running time: {latency * 1000000:.3f} us")


if __name__ == '__main__':
    parser = argparse.ArgumentParser(
        description="Benchmark the paged attention kernel.")
    parser.add_argument("--version",
                        type=str,
                        choices=["v1", "v2"],
                        default="v2")
    parser.add_argument("--batch-size", type=int, default=8)
    parser.add_argument("--context-len", type=int, default=4096)
    parser.add_argument("--num-query-heads", type=int, default=64)
    parser.add_argument("--num-kv-heads", type=int, default=8)
    parser.add_argument("--head-size",
                        type=int,
                        choices=[64, 80, 96, 112, 128, 256],
                        default=128)
    parser.add_argument("--block-size", type=int, choices=[16, 32], default=16)
    parser.add_argument("--use-alibi", action="store_true")
    parser.add_argument("--dtype",
                        type=str,
                        choices=["half", "bfloat16", "float"],
                        default="half")
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--profile", action="store_true")
179
180
181
182
183
184
185
    parser.add_argument(
        "--kv-cache-dtype",
        type=str,
        choices=["auto", "fp8_e5m2"],
        default="auto",
        help=
        'Data type for kv cache storage. If "auto", will use model data type.')
186
    parser.add_argument("--device", type=str, choices=["cuda"], default="cuda")
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    args = parser.parse_args()
    print(args)

    if args.num_query_heads % args.num_kv_heads != 0:
        raise ValueError("num_query_heads must be divisible by num_kv_heads")
    main(
        version=args.version,
        num_seqs=args.batch_size,
        context_len=args.context_len,
        num_query_heads=args.num_query_heads,
        num_kv_heads=args.num_kv_heads,
        head_size=args.head_size,
        block_size=args.block_size,
        use_alibi=args.use_alibi,
201
        dtype=STR_DTYPE_TO_TORCH_DTYPE[args.dtype],
202
203
        seed=args.seed,
        do_profile=args.profile,
204
        kv_cache_dtype=args.kv_cache_dtype,
205
    )