benchmark_paged_attention.py 6.47 KB
Newer Older
1
2
3
4
5
6
import argparse
import random
import time

import torch

7
from vllm._C import ops
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

NUM_BLOCKS = 1024
PARTITION_SIZE = 512


@torch.inference_mode()
def main(
    version: str,
    num_seqs: int,
    context_len: int,
    num_query_heads: int,
    num_kv_heads: int,
    head_size: int,
    use_alibi: bool,
    block_size: int,
    dtype: torch.dtype,
    seed: int,
    do_profile: bool,
) -> None:
    random.seed(seed)
    torch.random.manual_seed(seed)
    torch.cuda.manual_seed(seed)

    scale = float(1.0 / (head_size**0.5))
    query = torch.empty(num_seqs,
                        num_query_heads,
                        head_size,
                        dtype=dtype,
                        device="cuda")
    query.uniform_(-scale, scale)

    assert num_query_heads % num_kv_heads == 0
    num_queries_per_kv = num_query_heads // num_kv_heads
    head_mapping = torch.repeat_interleave(
        torch.arange(num_kv_heads, dtype=torch.int32, device="cuda"),
        num_queries_per_kv)
    alibi_slopes = None
    if use_alibi:
        alibi_slopes = torch.randn(num_query_heads,
                                   dtype=torch.float,
                                   device="cuda")

    context_lens = [context_len for _ in range(num_seqs)]
    max_context_len = max(context_lens)
    context_lens = torch.tensor(context_lens, dtype=torch.int, device="cuda")

    # Create the block tables.
    max_num_blocks_per_seq = (max_context_len + block_size - 1) // block_size
    block_tables = []
    for _ in range(num_seqs):
        block_table = [
            random.randint(0, NUM_BLOCKS - 1)
            for _ in range(max_num_blocks_per_seq)
        ]
        block_tables.append(block_table)
    block_tables = torch.tensor(block_tables, dtype=torch.int, device="cuda")

    # Create the KV cache.
    x = 16 // torch.tensor([], dtype=dtype).element_size()
    key_cache_shape = (NUM_BLOCKS, num_kv_heads, head_size // x, block_size, x)
    key_cache = torch.empty(size=key_cache_shape, dtype=dtype, device="cuda")
    key_cache.uniform_(-scale, scale)
    value_cache_shape = (NUM_BLOCKS, num_kv_heads, head_size, block_size)
    value_cache = torch.empty(size=value_cache_shape,
                              dtype=dtype,
                              device="cuda")
    value_cache.uniform_(-scale, scale)

    # Prepare for the paged attention kernel.
    output = torch.empty_like(query)
    if version == "v2":
        num_partitions = ((max_context_len + PARTITION_SIZE - 1) //
                          PARTITION_SIZE)
        tmp_output = torch.empty(
            size=(num_seqs, num_query_heads, num_partitions, head_size),
            dtype=output.dtype,
            device=output.device,
        )
        exp_sums = torch.empty(
            size=(num_seqs, num_query_heads, num_partitions),
            dtype=torch.float32,
            device=output.device,
        )
        max_logits = torch.empty_like(exp_sums)

    def run_benchmark(num_iters: int, profile: bool = False) -> float:
        torch.cuda.synchronize()
        if profile:
            torch.cuda.cudart().cudaProfilerStart()
        start_time = time.perf_counter()

        for _ in range(num_iters):
            if version == "v1":
101
                ops.paged_attention_v1(
102
103
104
105
106
107
108
109
110
111
112
113
114
                    output,
                    query,
                    key_cache,
                    value_cache,
                    head_mapping,
                    scale,
                    block_tables,
                    context_lens,
                    block_size,
                    max_context_len,
                    alibi_slopes,
                )
            elif version == "v2":
115
                ops.paged_attention_v2(
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
                    output,
                    exp_sums,
                    max_logits,
                    tmp_output,
                    query,
                    key_cache,
                    value_cache,
                    head_mapping,
                    scale,
                    block_tables,
                    context_lens,
                    block_size,
                    max_context_len,
                    alibi_slopes,
                )
            else:
                raise ValueError(f"Invalid version: {version}")
        torch.cuda.synchronize()

        end_time = time.perf_counter()
        if profile:
            torch.cuda.cudart().cudaProfilerStart()
        return (end_time - start_time) / num_iters

    # Warmup.
    print("Warming up...")
    run_benchmark(num_iters=3, profile=False)

    # Benchmark.
    if do_profile:
        latency = run_benchmark(num_iters=1, profile=True)
    else:
        latency = run_benchmark(num_iters=100, profile=False)
    print(f"Kernel running time: {latency * 1000000:.3f} us")


if __name__ == '__main__':
    parser = argparse.ArgumentParser(
        description="Benchmark the paged attention kernel.")
    parser.add_argument("--version",
                        type=str,
                        choices=["v1", "v2"],
                        default="v2")
    parser.add_argument("--batch-size", type=int, default=8)
    parser.add_argument("--context-len", type=int, default=4096)
    parser.add_argument("--num-query-heads", type=int, default=64)
    parser.add_argument("--num-kv-heads", type=int, default=8)
    parser.add_argument("--head-size",
                        type=int,
                        choices=[64, 80, 96, 112, 128, 256],
                        default=128)
    parser.add_argument("--block-size", type=int, choices=[16, 32], default=16)
    parser.add_argument("--use-alibi", action="store_true")
    parser.add_argument("--dtype",
                        type=str,
                        choices=["half", "bfloat16", "float"],
                        default="half")
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--profile", action="store_true")
    args = parser.parse_args()
    print(args)

    if args.num_query_heads % args.num_kv_heads != 0:
        raise ValueError("num_query_heads must be divisible by num_kv_heads")
    dtype_to_torch_dtype = {
        "half": torch.half,
        "bfloat16": torch.bfloat16,
        "float": torch.float,
    }
    main(
        version=args.version,
        num_seqs=args.batch_size,
        context_len=args.context_len,
        num_query_heads=args.num_query_heads,
        num_kv_heads=args.num_kv_heads,
        head_size=args.head_size,
        block_size=args.block_size,
        use_alibi=args.use_alibi,
        dtype=dtype_to_torch_dtype[args.dtype],
        seed=args.seed,
        do_profile=args.profile,
    )