worker.py 9.88 KB
Newer Older
1
from typing import Dict, List, Tuple
Woosuk Kwon's avatar
Woosuk Kwon committed
2
3
4
5
6

import torch

from cacheflow.models import get_model
from cacheflow.models import InputMetadata
7
8
9
from cacheflow.sampling_params import SamplingParams
from cacheflow.sequence import SequenceGroupInputs
from cacheflow.sequence import SequenceOutputs
Woosuk Kwon's avatar
Woosuk Kwon committed
10
from cacheflow.worker.cache_engine import CacheEngine
Zhuohan Li's avatar
Zhuohan Li committed
11
12
13
from cacheflow.parallel_utils.parallel_state import (
    initialize_model_parallel, get_tensor_model_parallel_world_size)
from cacheflow.utils import set_random_seed
Woosuk Kwon's avatar
Woosuk Kwon committed
14
15
16
17
18
19
20
21
22
23


class Worker:

    def __init__(
        self,
        model_name: str,
        block_size: int,
        num_gpu_blocks: int,
        num_cpu_blocks: int,
Woosuk Kwon's avatar
Woosuk Kwon committed
24
        dtype: str,
25
        seed: int,
Zhuohan Li's avatar
Zhuohan Li committed
26
27
28
29
30
31
        distributed_init_method: str,
        rank: int,
        world_size: int,
        model_path: str,
        tensor_parallel_size: int = 1,
        pipeline_parallel_size: int = 1,
Woosuk Kwon's avatar
Woosuk Kwon committed
32
    ) -> None:
Zhuohan Li's avatar
Zhuohan Li committed
33
34
35
36
37
38
        self.init_distributed_environment(distributed_init_method,
                                          rank,
                                          world_size,
                                          tensor_parallel_size,
                                          pipeline_parallel_size)
        self.worker_id = rank
Woosuk Kwon's avatar
Woosuk Kwon committed
39
        self.block_size = block_size
Zhuohan Li's avatar
Zhuohan Li committed
40
        set_random_seed(seed)
Woosuk Kwon's avatar
Woosuk Kwon committed
41
42

        # Initialize the model.
Zhuohan Li's avatar
Zhuohan Li committed
43
44
45
46
        self.model, self.dtype = get_model(model_name, dtype=dtype, path=model_path)
        self.model = self.model.cuda()
        tensor_model_parallel_world_size = (
            get_tensor_model_parallel_world_size())
Woosuk Kwon's avatar
Woosuk Kwon committed
47
        self.num_layers = self.model.config.num_hidden_layers
Zhuohan Li's avatar
Zhuohan Li committed
48
49
50
        assert self.model.config.num_attention_heads % tensor_model_parallel_world_size == 0
        self.num_heads = self.model.config.num_attention_heads // tensor_model_parallel_world_size
        self.head_size = self.model.config.hidden_size // (self.num_heads * tensor_model_parallel_world_size)
Woosuk Kwon's avatar
Woosuk Kwon committed
51

Zhuohan Li's avatar
Zhuohan Li committed
52
        # We reset the seed after initializing the model to ensure that
53
        # the random state is not affected by the model initialization.
Zhuohan Li's avatar
Zhuohan Li committed
54
        set_random_seed(seed)
55

Woosuk Kwon's avatar
Woosuk Kwon committed
56
        self.cache_engine = CacheEngine(
Zhuohan Li's avatar
Zhuohan Li committed
57
            worker_id=self.worker_id,
Woosuk Kwon's avatar
Woosuk Kwon committed
58
59
60
61
62
63
64
65
66
67
68
            num_layers=self.num_layers,
            num_heads=self.num_heads,
            head_size=self.head_size,
            block_size=block_size,
            num_gpu_blocks=num_gpu_blocks,
            num_cpu_blocks=num_cpu_blocks,
            dtype=self.dtype,
        )
        self.cache_events = self.cache_engine.events
        self.gpu_cache = self.cache_engine.gpu_cache

Zhuohan Li's avatar
Zhuohan Li committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

    def init_distributed_environment(self,
                                     distributed_init_method: str,
                                     rank: int,
                                     world_size: int,
                                     tensor_parallel_size: int = 1,
                                     pipeline_parallel_size: int = 1) -> None:
        """Initialize the distributed environment."""
        torch.distributed.init_process_group(
            backend='nccl',
            init_method=distributed_init_method,
            world_size=world_size,
            rank=rank,
        )
        # A small all_reduce for warmup.
        torch.distributed.all_reduce(torch.zeros(1).cuda())
        initialize_model_parallel(tensor_parallel_size,
                                  pipeline_parallel_size)


Woosuk Kwon's avatar
Woosuk Kwon committed
89
90
    def prepare_inputs(
        self,
91
        input_seq_groups: List[SequenceGroupInputs],
Woosuk Kwon's avatar
Woosuk Kwon committed
92
    ) -> Tuple[torch.LongTensor, torch.LongTensor, InputMetadata]:
93
94
95
        seq_groups: List[Tuple[List[int], SamplingParams]] = []
        seq_logprobs: Dict[int, float] = {}
        sampling_params: Dict[int, SamplingParams] = {}
Woosuk Kwon's avatar
Woosuk Kwon committed
96
97
98
99
        input_tokens: List[int] = []
        input_positions: List[int] = []
        slot_mapping: List[int] = []

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        # Add prompt tokens.
        prompt_lens: List[int] = []
        for input_seq_group in input_seq_groups:
            if not input_seq_group.is_prompt:
                continue

            seq_ids = list(input_seq_group.input_tokens.keys())
            sampling_params = input_seq_group.sampling_params
            seq_groups.append((seq_ids, sampling_params))
            seq_logprobs.update(input_seq_group.seq_logprobs)

            # Use any sequence in the group.
            seq_id = seq_ids[0]

            prompt_tokens = input_seq_group.input_tokens[seq_id]
            prompt_len = len(prompt_tokens)
Woosuk Kwon's avatar
Woosuk Kwon committed
116
117
            prompt_lens.append(prompt_len)

118
119
120
121
            input_tokens.extend(prompt_tokens)
            # NOTE(woosuk): Here we assume that the first token in the prompt
            # is always the first token in the sequence.
            input_positions.extend(range(len(prompt_tokens)))
Woosuk Kwon's avatar
Woosuk Kwon committed
122

123
124
            # Compute the slot mapping.
            block_table = input_seq_group.block_tables[seq_id]
Woosuk Kwon's avatar
Woosuk Kwon committed
125
126
127
128
129
130
            for i in range(prompt_len):
                block_number = block_table[i // self.block_size]
                block_offset = i % self.block_size
                slot = block_number * self.block_size + block_offset
                slot_mapping.append(slot)

Woosuk Kwon's avatar
Woosuk Kwon committed
131
132
133
134
135
        cumulative_prompt_lens: List[int] = [0]
        for prompt_len in prompt_lens:
            cumulative_prompt_lens.append(
                cumulative_prompt_lens[-1] + prompt_len)

136
        # Add generation tokens.
Woosuk Kwon's avatar
Woosuk Kwon committed
137
138
        max_context_len = 0
        max_num_blocks_per_seq = 0
139
        context_lens: List[int] = []
Woosuk Kwon's avatar
Woosuk Kwon committed
140
        generation_block_tables: List[List[int]] = []
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
        for input_seq_group in input_seq_groups:
            if input_seq_group.is_prompt:
                continue

            seq_ids = list(input_seq_group.input_tokens.keys())
            sampling_params = input_seq_group.sampling_params
            seq_groups.append((seq_ids, sampling_params))
            seq_logprobs.update(input_seq_group.seq_logprobs)

            for seq_id in seq_ids:
                assert len(input_seq_group.input_tokens[seq_id]) == 1
                generation_token = input_seq_group.input_tokens[seq_id][0]
                input_tokens.append(generation_token)

                position = input_seq_group.context_len - 1
                input_positions.append(position)

                block_table = input_seq_group.block_tables[seq_id]
                generation_block_tables.append(block_table)

                max_context_len = max(
                    max_context_len, input_seq_group.context_len)
                max_num_blocks_per_seq = max(
                    max_num_blocks_per_seq, len(block_table))
                context_lens.append(input_seq_group.context_len)

                block_number = block_table[position // self.block_size]
                block_offset = position % self.block_size
                slot = block_number * self.block_size + block_offset
                slot_mapping.append(slot)
Woosuk Kwon's avatar
Woosuk Kwon committed
171
172
173
174
175
176
177
178

        # Optimization: Pad the input length to be a multiple of 8.
        # This is required for utilizing the Tensor Cores in NVIDIA GPUs.
        input_tokens = _pad_to_alignment(input_tokens, multiple_of=8)
        input_positions = _pad_to_alignment(input_positions, multiple_of=8)

        # Convert to tensors.
        tokens_tensor = torch.tensor(
Zhuohan Li's avatar
Zhuohan Li committed
179
            input_tokens, dtype=torch.long, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
180
        positions_tensor = torch.tensor(
Zhuohan Li's avatar
Zhuohan Li committed
181
            input_positions, dtype=torch.long, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
182
        slot_mapping_tensor = torch.tensor(
Zhuohan Li's avatar
Zhuohan Li committed
183
            slot_mapping, dtype=torch.int, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
184
        context_lens_tensor = torch.tensor(
Zhuohan Li's avatar
Zhuohan Li committed
185
            context_lens, dtype=torch.int, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
186
187
188
        padded_block_tables = [
            _pad_to_max(block_table, max_num_blocks_per_seq)
            for block_table in generation_block_tables]
Woosuk Kwon's avatar
Woosuk Kwon committed
189
        block_tables_tensor = torch.tensor(
Zhuohan Li's avatar
Zhuohan Li committed
190
            padded_block_tables, dtype=torch.int, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
191
192
        cumulative_prompt_lens_tensor = torch.tensor(
            cumulative_prompt_lens, dtype=torch.int, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
193
194

        input_metadata = InputMetadata(
195
196
            seq_groups=seq_groups,
            seq_logprobs=seq_logprobs,
Woosuk Kwon's avatar
Woosuk Kwon committed
197
            prompt_lens=prompt_lens,
Woosuk Kwon's avatar
Woosuk Kwon committed
198
            cumulative_prompt_lens=cumulative_prompt_lens_tensor,
Woosuk Kwon's avatar
Woosuk Kwon committed
199
200
201
202
203
204
205
206
207
208
            slot_mapping=slot_mapping_tensor,
            context_lens=context_lens_tensor,
            max_context_len=max_context_len,
            block_tables=block_tables_tensor,
        )
        return tokens_tensor, positions_tensor, input_metadata

    @torch.inference_mode()
    def execute_stage(
        self,
209
        input_seq_groups: List[SequenceGroupInputs],
Woosuk Kwon's avatar
Woosuk Kwon committed
210
211
        blocks_to_swap_in: Dict[int, int],
        blocks_to_swap_out: Dict[int, int],
212
213
        blocks_to_copy: Dict[int, List[int]],
    ) -> Dict[int, SequenceOutputs]:
Woosuk Kwon's avatar
Woosuk Kwon committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
        # Issue cache operations.
        command_issued = False
        if blocks_to_swap_in:
            self.cache_engine.swap_in(blocks_to_swap_in)
            command_issued = True
        if blocks_to_swap_out:
            self.cache_engine.swap_out(blocks_to_swap_out)
            command_issued = True
        if blocks_to_copy:
            self.cache_engine.copy(blocks_to_copy)
            command_issued = True

        if command_issued:
            cache_events = self.cache_events
        else:
            cache_events = None

Woosuk Kwon's avatar
Woosuk Kwon committed
231
232
233
234
235
236
237
        # If there is no input, we don't need to execute the model.
        if not input_seq_groups:
            if cache_events is not None:
                for event in cache_events:
                    event.wait()
            return {}

Woosuk Kwon's avatar
Woosuk Kwon committed
238
239
        # Prepare input tensors.
        input_tokens, input_positions, input_metadata = self.prepare_inputs(
240
            input_seq_groups)
Woosuk Kwon's avatar
Woosuk Kwon committed
241
242
243
244
245

        # Execute the model.
        output = self.model(
            input_ids=input_tokens,
            positions=input_positions,
Woosuk Kwon's avatar
Minor  
Woosuk Kwon committed
246
            kv_caches=self.gpu_cache,
Woosuk Kwon's avatar
Woosuk Kwon committed
247
248
249
250
251
252
253
254
255
256
257
258
            input_metadata=input_metadata,
            cache_events=cache_events,
        )
        return output


def _pad_to_alignment(x: List[int], multiple_of: int) -> List[int]:
    return x + [0] * ((-len(x)) % multiple_of)


def _pad_to_max(x: List[int], max_len: int) -> List[int]:
    return x + [0] * (max_len - len(x))