benchmark_latency.py 4.89 KB
Newer Older
1
"""Benchmark the latency of processing a single batch of requests."""
2
3
import argparse
import time
4
5
from pathlib import Path
from typing import Optional
6
7
8

import numpy as np
import torch
9
from tqdm import tqdm
10

Woosuk Kwon's avatar
Woosuk Kwon committed
11
from vllm import LLM, SamplingParams
12
13
14


def main(args: argparse.Namespace):
15
16
17
    print(args)

    # NOTE(woosuk): If the request cannot be processed in a single batch,
Zhuohan Li's avatar
Zhuohan Li committed
18
    # the engine will automatically process the request in multiple batches.
19
20
    llm = LLM(
        model=args.model,
21
        tokenizer=args.tokenizer,
22
        quantization=args.quantization,
23
        tensor_parallel_size=args.tensor_parallel_size,
24
        trust_remote_code=args.trust_remote_code,
25
        dtype=args.dtype,
26
        enforce_eager=args.enforce_eager,
27
    )
28

Woosuk Kwon's avatar
Woosuk Kwon committed
29
30
31
32
33
    sampling_params = SamplingParams(
        n=args.n,
        temperature=0.0 if args.use_beam_search else 1.0,
        top_p=1.0,
        use_beam_search=args.use_beam_search,
34
        ignore_eos=True,
Woosuk Kwon's avatar
Woosuk Kwon committed
35
36
        max_tokens=args.output_len,
    )
37
    print(sampling_params)
38
    dummy_prompt_token_ids = [[0] * args.input_len] * args.batch_size
39

40
41
42
43
44
45
46
47
48
    def run_to_completion(profile_dir: Optional[str] = None):
        if profile_dir:
            with torch.profiler.profile(
                    activities=[
                        torch.profiler.ProfilerActivity.CPU,
                        torch.profiler.ProfilerActivity.CUDA,
                    ],
                    on_trace_ready=torch.profiler.tensorboard_trace_handler(
                        str(profile_dir))) as p:
49
50
51
52
53
54
55
56
57
58
59
60
                llm.generate(prompt_token_ids=dummy_prompt_token_ids,
                             sampling_params=sampling_params,
                             use_tqdm=False)
            print(p.key_averages())
        else:
            start_time = time.perf_counter()
            llm.generate(prompt_token_ids=dummy_prompt_token_ids,
                         sampling_params=sampling_params,
                         use_tqdm=False)
            end_time = time.perf_counter()
            latency = end_time - start_time
            return latency
61

62
    print("Warming up...")
63
    run_to_completion(profile_dir=None)
64

65
    if args.profile:
66
67
        profile_dir = args.profile_result_dir
        if not profile_dir:
68
69
70
            profile_dir = Path(
                "."
            ) / "vllm_benchmark_result" / f"latency_result_{time.time()}"
71
72
        print(f"Profiling (results will be saved to '{profile_dir}')...")
        run_to_completion(profile_dir=args.profile_result_dir)
73
74
        return

75
76
    # Benchmark.
    latencies = []
77
    for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
78
        latencies.append(run_to_completion(profile_dir=None))
79
80
81
82
    print(f'Avg latency: {np.mean(latencies)} seconds')


if __name__ == '__main__':
83
    parser = argparse.ArgumentParser(
84
        description='Benchmark the latency of processing a single batch of '
85
        'requests till completion.')
86
    parser.add_argument('--model', type=str, default='facebook/opt-125m')
87
    parser.add_argument('--tokenizer', type=str, default=None)
88
89
    parser.add_argument('--quantization',
                        '-q',
CHU Tianxiang's avatar
CHU Tianxiang committed
90
                        choices=['awq', 'gptq', 'squeezellm', None],
91
                        default=None)
92
    parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
93
94
95
    parser.add_argument('--input-len', type=int, default=32)
    parser.add_argument('--output-len', type=int, default=128)
    parser.add_argument('--batch-size', type=int, default=8)
96
97
98
    parser.add_argument('--n',
                        type=int,
                        default=1,
99
                        help='Number of generated sequences per prompt.')
100
    parser.add_argument('--use-beam-search', action='store_true')
101
102
103
    parser.add_argument('--num-iters',
                        type=int,
                        default=3,
104
                        help='Number of iterations to run.')
105
106
    parser.add_argument('--trust-remote-code',
                        action='store_true',
107
                        help='trust remote code from huggingface')
108
109
110
111
112
113
114
115
116
    parser.add_argument(
        '--dtype',
        type=str,
        default='auto',
        choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'],
        help='data type for model weights and activations. '
        'The "auto" option will use FP16 precision '
        'for FP32 and FP16 models, and BF16 precision '
        'for BF16 models.')
117
118
119
    parser.add_argument('--enforce-eager',
                        action='store_true',
                        help='enforce eager mode and disable CUDA graph')
120
121
122
123
    parser.add_argument(
        '--profile',
        action='store_true',
        help='profile the generation process of a single batch')
124
125
126
127
    parser.add_argument(
        '--profile-result-dir',
        type=str,
        default=None,
128
129
        help=('path to save the pytorch profiler output. Can be visualized '
              'with ui.perfetto.dev or Tensorboard.'))
130
131
    args = parser.parse_args()
    main(args)