benchmark_latency.py 3.97 KB
Newer Older
1
"""Benchmark the latency of processing a single batch of requests."""
2
3
4
5
6
import argparse
import time

import numpy as np
import torch
7
from tqdm import tqdm
8

Woosuk Kwon's avatar
Woosuk Kwon committed
9
from vllm import LLM, SamplingParams
10
11
12


def main(args: argparse.Namespace):
13
14
15
    print(args)

    # NOTE(woosuk): If the request cannot be processed in a single batch,
Zhuohan Li's avatar
Zhuohan Li committed
16
    # the engine will automatically process the request in multiple batches.
17
18
    llm = LLM(
        model=args.model,
19
        tokenizer=args.tokenizer,
20
        quantization=args.quantization,
21
        tensor_parallel_size=args.tensor_parallel_size,
22
        trust_remote_code=args.trust_remote_code,
23
        dtype=args.dtype,
24
    )
25

Woosuk Kwon's avatar
Woosuk Kwon committed
26
27
28
29
30
    sampling_params = SamplingParams(
        n=args.n,
        temperature=0.0 if args.use_beam_search else 1.0,
        top_p=1.0,
        use_beam_search=args.use_beam_search,
31
        ignore_eos=True,
Woosuk Kwon's avatar
Woosuk Kwon committed
32
33
        max_tokens=args.output_len,
    )
34
    print(sampling_params)
35
    dummy_prompt_token_ids = [[0] * args.input_len] * args.batch_size
36

37
    def run_to_completion(profile: bool = False):
38
        if profile:
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
            with torch.profiler.profile(activities=[
                    torch.profiler.ProfilerActivity.CPU,
                    torch.profiler.ProfilerActivity.CUDA,
            ]) as p:
                llm.generate(prompt_token_ids=dummy_prompt_token_ids,
                             sampling_params=sampling_params,
                             use_tqdm=False)
            print(p.key_averages())
        else:
            start_time = time.perf_counter()
            llm.generate(prompt_token_ids=dummy_prompt_token_ids,
                         sampling_params=sampling_params,
                         use_tqdm=False)
            end_time = time.perf_counter()
            latency = end_time - start_time
            return latency
55

56
57
    print("Warming up...")
    run_to_completion(profile=False)
58

59
60
61
62
63
    if args.profile:
        print("Profiling...")
        run_to_completion(profile=True)
        return

64
65
    # Benchmark.
    latencies = []
66
67
    for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
        latencies.append(run_to_completion(profile=False))
68
69
70
71
    print(f'Avg latency: {np.mean(latencies)} seconds')


if __name__ == '__main__':
72
    parser = argparse.ArgumentParser(
73
        description='Benchmark the latency of processing a single batch of '
74
        'requests till completion.')
75
    parser.add_argument('--model', type=str, default='facebook/opt-125m')
76
    parser.add_argument('--tokenizer', type=str, default=None)
77
78
    parser.add_argument('--quantization',
                        '-q',
chooper1's avatar
chooper1 committed
79
                        choices=['awq', 'squeezellm', None],
80
                        default=None)
81
    parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
82
83
84
    parser.add_argument('--input-len', type=int, default=32)
    parser.add_argument('--output-len', type=int, default=128)
    parser.add_argument('--batch-size', type=int, default=8)
85
86
87
    parser.add_argument('--n',
                        type=int,
                        default=1,
88
                        help='Number of generated sequences per prompt.')
89
    parser.add_argument('--use-beam-search', action='store_true')
90
91
92
    parser.add_argument('--num-iters',
                        type=int,
                        default=3,
93
                        help='Number of iterations to run.')
94
95
    parser.add_argument('--trust-remote-code',
                        action='store_true',
96
                        help='trust remote code from huggingface')
97
98
99
100
101
102
103
104
105
    parser.add_argument(
        '--dtype',
        type=str,
        default='auto',
        choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'],
        help='data type for model weights and activations. '
        'The "auto" option will use FP16 precision '
        'for FP32 and FP16 models, and BF16 precision '
        'for BF16 models.')
106
107
108
109
    parser.add_argument(
        '--profile',
        action='store_true',
        help='profile the generation process of a single batch')
110
111
    args = parser.parse_args()
    main(args)