"vscode:/vscode.git/clone" did not exist on "b9d33690f4814513e17942052cfa3dd0f6b058f3"
cache_kernels.cu 14.5 KB
Newer Older
Woosuk Kwon's avatar
Woosuk Kwon committed
1
2
3
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>

4
#include "cuda_compat.h"
5
6
#include "dispatch_utils.h"

Woosuk Kwon's avatar
Woosuk Kwon committed
7
#include <algorithm>
Woosuk Kwon's avatar
Woosuk Kwon committed
8
9
#include <cassert>
#include <map>
10
#include <vector>
Woosuk Kwon's avatar
Woosuk Kwon committed
11

12
void swap_blocks(
Woosuk Kwon's avatar
Woosuk Kwon committed
13
14
15
16
17
18
19
  torch::Tensor& src,
  torch::Tensor& dst,
  const std::map<int64_t, int64_t>& block_mapping) {
  torch::Device src_device = src.device();
  torch::Device dst_device = dst.device();
  cudaMemcpyKind memcpy_type;
  if (src_device.is_cuda() && dst_device.is_cuda()) {
Woosuk Kwon's avatar
Woosuk Kwon committed
20
21
22
    TORCH_CHECK(
      src_device.index() == dst_device.index(),
      "src and dst must be on the same GPU");
Woosuk Kwon's avatar
Woosuk Kwon committed
23
24
25
26
27
28
    memcpy_type = cudaMemcpyDeviceToDevice;
  } else if (src_device.is_cuda() && dst_device.is_cpu()) {
    memcpy_type = cudaMemcpyDeviceToHost;
  } else if (src_device.is_cpu() && dst_device.is_cuda()) {
    memcpy_type = cudaMemcpyHostToDevice;
  } else {
Woosuk Kwon's avatar
Woosuk Kwon committed
29
    TORCH_CHECK(false, "Invalid device combination");
Woosuk Kwon's avatar
Woosuk Kwon committed
30
31
  }

32
33
  char *src_ptr = static_cast<char*>(src.data_ptr());
  char *dst_ptr = static_cast<char*>(dst.data_ptr());
Woosuk Kwon's avatar
Woosuk Kwon committed
34
35
36

  const int64_t block_size_in_bytes = src.element_size() * src[0].numel();
  const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
Woosuk Kwon's avatar
Woosuk Kwon committed
37
  // NOTE(woosuk): This can be slow if the number of blocks is large.
Woosuk Kwon's avatar
Woosuk Kwon committed
38
39
40
41
42
43
44
45
46
47
48
49
50
  for (const auto& pair : block_mapping) {
    int64_t src_block_number = pair.first;
    int64_t dst_block_number = pair.second;
    int64_t src_offset = src_block_number * block_size_in_bytes;
    int64_t dst_offset = dst_block_number * block_size_in_bytes;
    cudaMemcpyAsync(
      dst_ptr + dst_offset,
      src_ptr + src_offset,
      block_size_in_bytes,
      memcpy_type,
      stream);
  }
}
Woosuk Kwon's avatar
Woosuk Kwon committed
51

Woosuk Kwon's avatar
Woosuk Kwon committed
52
namespace vllm {
53
54
55
56
57
58

// Grid: (num_layers, num_pairs)
template<typename scalar_t>
__global__ void copy_blocks_kernel(
  int64_t* key_cache_ptrs,
  int64_t* value_cache_ptrs,
59
  const int64_t* __restrict__ block_mapping,
60
61
62
63
64
65
  const int numel_per_block) {
  const int layer_idx = blockIdx.x;
  const int pair_idx = blockIdx.y;

  scalar_t* key_cache = reinterpret_cast<scalar_t*>(key_cache_ptrs[layer_idx]);
  scalar_t* value_cache = reinterpret_cast<scalar_t*>(value_cache_ptrs[layer_idx]);
66
67
  int64_t src_block_number = block_mapping[2 * pair_idx];
  int64_t dst_block_number = block_mapping[2 * pair_idx + 1];
68

69
70
  const int64_t src_block_offset = src_block_number * numel_per_block;
  const int64_t dst_block_offset = dst_block_number * numel_per_block;
71
  for (int i = threadIdx.x; i < numel_per_block; i += blockDim.x) {
72
73
    int64_t src_offset = src_block_offset + i;
    int64_t dst_offset = dst_block_offset + i;
74
75
76
    key_cache[dst_offset] = key_cache[src_offset];
  }
  for (int i = threadIdx.x; i < numel_per_block; i += blockDim.x) {
77
78
    int64_t src_offset = src_block_offset + i;
    int64_t dst_offset = dst_block_offset + i;
79
80
81
82
    value_cache[dst_offset] = value_cache[src_offset];
  }
}

Woosuk Kwon's avatar
Woosuk Kwon committed
83
} // namespace vllm
84

85
void copy_blocks(
86
87
  std::vector<torch::Tensor>& key_caches,
  std::vector<torch::Tensor>& value_caches,
88
  const std::map<int64_t, std::vector<int64_t>>& block_mapping) {
89
90
91
92
93
94
95
  int num_layers = key_caches.size();
  TORCH_CHECK(num_layers == value_caches.size());
  if (num_layers == 0) {
    return;
  }
  torch::Device cache_device = key_caches[0].device();
  TORCH_CHECK(cache_device.is_cuda());
96

97
98
99
100
101
102
103
104
105
  // Create data structures for the kernel.
  // Create an array of pointers to the key and value caches.
  int64_t key_cache_ptrs[num_layers];
  int64_t value_cache_ptrs[num_layers];
  for (int layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
    key_cache_ptrs[layer_idx] = reinterpret_cast<int64_t>(key_caches[layer_idx].data_ptr());
    value_cache_ptrs[layer_idx] = reinterpret_cast<int64_t>(value_caches[layer_idx].data_ptr());
  }
  // Create block mapping array.
106
  std::vector<int64_t> block_mapping_vec;
107
  for (const auto& pair : block_mapping) {
108
109
    int64_t src_block_number = pair.first;
    for (int64_t dst_block_number : pair.second) {
110
111
      block_mapping_vec.push_back(src_block_number);
      block_mapping_vec.push_back(dst_block_number);
112
113
    }
  }
114
  int64_t* block_mapping_array = block_mapping_vec.data();
115
116
117
118
119
120
121
122
123
  int num_pairs = block_mapping_vec.size() / 2;

  // Move the data structures to the GPU.
  // NOTE: This synchronizes the CPU and GPU.
  torch::Tensor key_cache_ptrs_tensor = torch::from_blob(
    key_cache_ptrs, {num_layers}, torch::kInt64).to(cache_device);
  torch::Tensor value_cache_ptrs_tensor = torch::from_blob(
    value_cache_ptrs, {num_layers}, torch::kInt64).to(cache_device);
  torch::Tensor block_mapping_tensor = torch::from_blob(
124
    block_mapping_array, {2 * num_pairs}, torch::kInt64).to(cache_device);
125
126
127
128
129
130

  // Launch the kernel.
  const int numel_per_block = key_caches[0][0].numel();
  dim3 grid(num_layers, num_pairs);
  dim3 block(std::min(1024, numel_per_block));
  const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
131
  VLLM_DISPATCH_FLOATING_TYPES(
132
    key_caches[0].scalar_type(), "copy_blocks_kernel", ([&] {
Woosuk Kwon's avatar
Woosuk Kwon committed
133
      vllm::copy_blocks_kernel<scalar_t><<<grid, block, 0, stream>>>(
134
135
        key_cache_ptrs_tensor.data_ptr<int64_t>(),
        value_cache_ptrs_tensor.data_ptr<int64_t>(),
136
        block_mapping_tensor.data_ptr<int64_t>(),
137
138
        numel_per_block);
    }));
139
140
}

Woosuk Kwon's avatar
Woosuk Kwon committed
141
namespace vllm {
Woosuk Kwon's avatar
Woosuk Kwon committed
142

Woosuk Kwon's avatar
Woosuk Kwon committed
143
144
template<typename scalar_t>
__global__ void reshape_and_cache_kernel(
145
146
147
148
149
  const scalar_t* __restrict__ key,           // [num_tokens, num_heads, head_size]
  const scalar_t* __restrict__ value,         // [num_tokens, num_heads, head_size]
  scalar_t* __restrict__ key_cache,           // [num_blocks, num_heads, head_size/x, block_size, x]
  scalar_t* __restrict__ value_cache,         // [num_blocks, num_heads, head_size, block_size]
  const int64_t* __restrict__ slot_mapping,   // [num_tokens]
Woosuk Kwon's avatar
Woosuk Kwon committed
150
151
  const int key_stride,
  const int value_stride,
Woosuk Kwon's avatar
Woosuk Kwon committed
152
153
154
155
  const int num_heads,
  const int head_size,
  const int block_size,
  const int x) {
156
157
  const int64_t token_idx = blockIdx.x;
  const int64_t slot_idx = slot_mapping[token_idx];
158
159
160
161
162
  if (slot_idx < 0) {
    // Padding token that should be ignored.
    return;
  }

163
164
  const int64_t block_idx = slot_idx / block_size;
  const int64_t block_offset = slot_idx % block_size;
Woosuk Kwon's avatar
Woosuk Kwon committed
165
166
167

  const int n = num_heads * head_size;
  for (int i = threadIdx.x; i < n; i += blockDim.x) {
168
169
    const int64_t src_key_idx = token_idx * key_stride + i;
    const int64_t src_value_idx = token_idx * value_stride + i;
Woosuk Kwon's avatar
Woosuk Kwon committed
170
171
172
173
174
175

    const int head_idx = i / head_size;
    const int head_offset = i % head_size;
    const int x_idx = head_offset / x;
    const int x_offset = head_offset % x;

176
177
178
179
180
181
182
183
184
    const int64_t tgt_key_idx = block_idx * num_heads * (head_size / x) * block_size * x
                                + head_idx * (head_size / x) * block_size * x
                                + x_idx * block_size * x
                                + block_offset * x
                                + x_offset;
    const int64_t tgt_value_idx = block_idx * num_heads * head_size * block_size
                                  + head_idx * head_size * block_size
                                  + head_offset * block_size
                                  + block_offset;
185
186
    key_cache[tgt_key_idx] = key[src_key_idx];
    value_cache[tgt_value_idx] = value[src_value_idx];
Woosuk Kwon's avatar
Woosuk Kwon committed
187
188
189
  }
}

Woosuk Kwon's avatar
Woosuk Kwon committed
190
} // namespace vllm
Woosuk Kwon's avatar
Woosuk Kwon committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

void reshape_and_cache(
  torch::Tensor& key,           // [num_tokens, num_heads, head_size]
  torch::Tensor& value,         // [num_tokens, num_heads, head_size]
  torch::Tensor& key_cache,     // [num_blocks, num_heads, head_size/x, block_size, x]
  torch::Tensor& value_cache,   // [num_blocks, num_heads, head_size, block_size]
  torch::Tensor& slot_mapping)  // [num_tokens]
{
  int num_tokens = key.size(0);
  int num_heads = key.size(1);
  int head_size = key.size(2);
  int block_size = key_cache.size(3);
  int x = key_cache.size(4);

  int key_stride = key.stride(0);
  int value_stride = value.stride(0);

  dim3 grid(num_tokens);
  dim3 block(std::min(num_heads * head_size, 512));
  const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
211
  VLLM_DISPATCH_FLOATING_TYPES(
Woosuk Kwon's avatar
Woosuk Kwon committed
212
213
214
    key.scalar_type(),
    "reshape_and_cache_kernel",
    [&] {
Woosuk Kwon's avatar
Woosuk Kwon committed
215
      vllm::reshape_and_cache_kernel<scalar_t><<<grid, block, 0, stream>>>(
Woosuk Kwon's avatar
Woosuk Kwon committed
216
217
218
219
        key.data_ptr<scalar_t>(),
        value.data_ptr<scalar_t>(),
        key_cache.data_ptr<scalar_t>(),
        value_cache.data_ptr<scalar_t>(),
220
        slot_mapping.data_ptr<int64_t>(),
Woosuk Kwon's avatar
Woosuk Kwon committed
221
222
223
224
225
226
227
228
229
        key_stride,
        value_stride,
        num_heads,
        head_size,
        block_size,
        x);
    });
}

Woosuk Kwon's avatar
Woosuk Kwon committed
230
namespace vllm {
Woosuk Kwon's avatar
Woosuk Kwon committed
231

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
// Grid: (num_blocks, block_size).
template<typename scalar_t>
__global__ void gather_cached_kv_kernel(
  scalar_t* __restrict__ key,             // [num_tokens, [stride], num_heads, head_size]
  scalar_t* __restrict__ value,           // [num_tokens, [stride], num_heads, head_size]
  const scalar_t* __restrict__ key_cache,   // [num_blocks, num_heads, head_size/x, block_size, x]
  const scalar_t* __restrict__ value_cache,   // [num_blocks, num_heads, head_size, block_size]
  const int* __restrict__ slot_mapping,   // [num_tokens]
  const int key_stride,
  const int value_stride,
  const int num_heads,
  const int head_size,
  const int block_size,
  const int x) {
    const int token_idx = blockIdx.x;
    const int slot_idx = slot_mapping[token_idx];
    const int block_idx = slot_idx / block_size;
    const int block_offset = slot_idx % block_size;

    const int num_tokens = num_heads * head_size;
    for (int i = threadIdx.x; i < num_tokens; i += blockDim.x) {
      const int tgt_key_idx = token_idx * key_stride + i;
      const int tgt_value_idx = token_idx * value_stride + i;
  
      const int head_idx = i / head_size;
      const int head_offset = i % head_size;
      const int x_idx = head_offset / x;  // the offset of the [head_size/x] dimension
      const int x_offset = head_offset % x;
  
      const int src_key_idx = block_idx * num_heads * (head_size / x) * block_size * x
                              + head_idx * (head_size / x) * block_size * x
                              + x_idx * block_size * x
                              + block_offset * x
                              + x_offset;
      const int src_value_idx = block_idx * num_heads * head_size * block_size
                                + head_idx * head_size * block_size
                                + head_offset * block_size
                                + block_offset;

271
272
      key[tgt_key_idx] = VLLM_LDG(&key_cache[src_key_idx]);
      value[tgt_value_idx] = VLLM_LDG(&value_cache[src_value_idx]);
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    }
}

template <typename scalar_t>
__global__ void gather_cached_kv_kernel_optimized(
    scalar_t *__restrict__ key,             // [num_tokens, [stride], num_heads, head_size]
    scalar_t *__restrict__ value,           // [num_tokens, [stride], num_heads, head_size]
    const scalar_t *__restrict__ key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
    const scalar_t *__restrict__ value_cache, // [num_blocks, num_heads, head_size, block_size]
    const int *__restrict__ slot_mapping,   // [num_tokens]
    const int key_stride,
    const int value_stride,
    const int num_heads,
    const int head_size,
    const int block_size,
    const int x)
{
    const int token_idx = blockIdx.x;
    const int slot_idx = slot_mapping[token_idx];
    const int block_idx = slot_idx / block_size;
    const int block_offset = slot_idx % block_size;

    const int dim = num_heads * head_size;
    assert(dim % 4 == 0);  // this is true for known use cases
    const int unroll_factor = 4;
    const int unrolled_dim = dim / unroll_factor;

    for (int i = threadIdx.x; i < unrolled_dim; i += blockDim.x)
    {
        int tgt_key_indices[unroll_factor];
        int tgt_value_indices[unroll_factor];
        int src_key_indices[unroll_factor];
        int src_value_indices[unroll_factor];
        scalar_t keys_to_store[unroll_factor];
        scalar_t values_to_store[unroll_factor];

        #pragma unroll
        for (int j = 0; j < unroll_factor; ++j)
        {
            int index = i + j * unrolled_dim;

            const int tgt_key_idx = token_idx * key_stride + index;
            const int tgt_value_idx = token_idx * value_stride + index;

            const int head_idx = index / head_size;
            const int head_offset = index % head_size;
            const int x_idx = head_offset / x;
            const int x_offset = head_offset % x;

            const int src_key_idx = block_idx * num_heads * (head_size / x) * block_size * x
                                    + head_idx * (head_size / x) * block_size * x
                                    + x_idx * block_size * x
                                    + block_offset * x
                                    + x_offset;
            const int src_value_idx = block_idx * num_heads * head_size * block_size
                                      + head_idx * head_size * block_size
                                      + head_offset * block_size
                                      + block_offset;

            tgt_key_indices[j] = tgt_key_idx;
            tgt_value_indices[j] = tgt_value_idx;
            src_key_indices[j] = src_key_idx;
            src_value_indices[j] = src_value_idx;

337
338
            keys_to_store[j] = VLLM_LDG(&key_cache[src_key_idx]);
            values_to_store[j] = VLLM_LDG(&value_cache[src_value_idx]);
339
340
341
342
343
344
345
346
347
348
349
        }

        #pragma unroll
        for (int j = 0; j < unroll_factor; ++j)
        {
            key[tgt_key_indices[j]] = keys_to_store[j];
            value[tgt_value_indices[j]] = values_to_store[j];
        }
    }
}

Woosuk Kwon's avatar
Woosuk Kwon committed
350
} // namespace vllm
Woosuk Kwon's avatar
Woosuk Kwon committed
351

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
void gather_cached_kv(
  torch::Tensor& key,           // [out] [num_tokens, num_heads, head_size]
  torch::Tensor& value,         // [out] [num_tokens, num_heads, head_size]
  torch::Tensor& key_cache,     // [in]  [num_blocks, num_heads, head_size/x, block_size, x]
  torch::Tensor& value_cache,   // [in]  [num_blocks, num_heads, head_size, block_size]
  torch::Tensor& slot_mapping)  // [in]  [num_tokens]
{
  int num_tokens = key.size(0);
  int num_heads = key.size(1);
  int head_size = key.size(2);
  int block_size = key_cache.size(3);
  int x = key_cache.size(4);

  int key_stride = key.stride(0);
  int value_stride = value.stride(0);

  dim3 grid(num_tokens);
  dim3 block(std::min(num_heads * head_size, 512));
  const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
371
  VLLM_DISPATCH_FLOATING_TYPES(
372
373
374
    key.scalar_type(),
    "gather_cached_kv_kernel_optimized",
    [&] {
Woosuk Kwon's avatar
Woosuk Kwon committed
375
      vllm::gather_cached_kv_kernel_optimized<scalar_t><<<grid, block, 0, stream>>>(
376
377
378
379
380
381
382
383
384
385
386
387
388
        key.data_ptr<scalar_t>(),
        value.data_ptr<scalar_t>(),
        key_cache.data_ptr<scalar_t>(),
        value_cache.data_ptr<scalar_t>(),
        slot_mapping.data_ptr<int>(),
        key_stride,
        value_stride,
        num_heads,
        head_size,
        block_size,
        x);
    });
}