cache_kernels.cu 14 KB
Newer Older
Woosuk Kwon's avatar
Woosuk Kwon committed
1
2
3
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>

Woosuk Kwon's avatar
Woosuk Kwon committed
4
#include <algorithm>
Woosuk Kwon's avatar
Woosuk Kwon committed
5
6
#include <cassert>
#include <map>
7
#include <vector>
Woosuk Kwon's avatar
Woosuk Kwon committed
8

9
void swap_blocks(
Woosuk Kwon's avatar
Woosuk Kwon committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
  torch::Tensor& src,
  torch::Tensor& dst,
  const std::map<int64_t, int64_t>& block_mapping) {
  torch::Device src_device = src.device();
  torch::Device dst_device = dst.device();
  cudaMemcpyKind memcpy_type;
  if (src_device.is_cuda() && dst_device.is_cuda()) {
    assert(src_device.index() == dst_device.index());
    memcpy_type = cudaMemcpyDeviceToDevice;
  } else if (src_device.is_cuda() && dst_device.is_cpu()) {
    memcpy_type = cudaMemcpyDeviceToHost;
  } else if (src_device.is_cpu() && dst_device.is_cuda()) {
    memcpy_type = cudaMemcpyHostToDevice;
  } else {
    assert(false);
  }

  void *src_ptr = src.data_ptr();
  void *dst_ptr = dst.data_ptr();

  const int64_t block_size_in_bytes = src.element_size() * src[0].numel();
  const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
  for (const auto& pair : block_mapping) {
    int64_t src_block_number = pair.first;
    int64_t dst_block_number = pair.second;
    int64_t src_offset = src_block_number * block_size_in_bytes;
    int64_t dst_offset = dst_block_number * block_size_in_bytes;
    cudaMemcpyAsync(
      dst_ptr + dst_offset,
      src_ptr + src_offset,
      block_size_in_bytes,
      memcpy_type,
      stream);
  }
}
Woosuk Kwon's avatar
Woosuk Kwon committed
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
namespace cacheflow {

// Grid: (num_layers, num_pairs)
template<typename scalar_t>
__global__ void copy_blocks_kernel(
  int64_t* key_cache_ptrs,
  int64_t* value_cache_ptrs,
  const int* __restrict__ block_mapping,
  const int numel_per_block) {
  const int layer_idx = blockIdx.x;
  const int pair_idx = blockIdx.y;

  scalar_t* key_cache = reinterpret_cast<scalar_t*>(key_cache_ptrs[layer_idx]);
  scalar_t* value_cache = reinterpret_cast<scalar_t*>(value_cache_ptrs[layer_idx]);
  int src_block_number = block_mapping[2 * pair_idx];
  int dst_block_number = block_mapping[2 * pair_idx + 1];

  const int src_block_offset = src_block_number * numel_per_block;
  const int dst_block_offset = dst_block_number * numel_per_block;
  for (int i = threadIdx.x; i < numel_per_block; i += blockDim.x) {
    int src_offset = src_block_offset + i;
    int dst_offset = dst_block_offset + i;
    key_cache[dst_offset] = key_cache[src_offset];
  }
  for (int i = threadIdx.x; i < numel_per_block; i += blockDim.x) {
    int src_offset = src_block_offset + i;
    int dst_offset = dst_block_offset + i;
    value_cache[dst_offset] = value_cache[src_offset];
  }
}

} // namespace cacheflow

79
void copy_blocks(
80
81
  std::vector<torch::Tensor>& key_caches,
  std::vector<torch::Tensor>& value_caches,
82
  const std::map<int64_t, std::vector<int64_t>>& block_mapping) {
83
84
85
86
87
88
89
  int num_layers = key_caches.size();
  TORCH_CHECK(num_layers == value_caches.size());
  if (num_layers == 0) {
    return;
  }
  torch::Device cache_device = key_caches[0].device();
  TORCH_CHECK(cache_device.is_cuda());
90

91
92
93
94
95
96
97
98
99
100
  // Create data structures for the kernel.
  // Create an array of pointers to the key and value caches.
  int64_t key_cache_ptrs[num_layers];
  int64_t value_cache_ptrs[num_layers];
  for (int layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
    key_cache_ptrs[layer_idx] = reinterpret_cast<int64_t>(key_caches[layer_idx].data_ptr());
    value_cache_ptrs[layer_idx] = reinterpret_cast<int64_t>(value_caches[layer_idx].data_ptr());
  }
  // Create block mapping array.
  std::vector<int> block_mapping_vec;
101
  for (const auto& pair : block_mapping) {
102
103
104
105
    int src_block_number = pair.first;
    for (int dst_block_number : pair.second) {
      block_mapping_vec.push_back(src_block_number);
      block_mapping_vec.push_back(dst_block_number);
106
107
    }
  }
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
  int* block_mapping_array = block_mapping_vec.data();
  int num_pairs = block_mapping_vec.size() / 2;

  // Move the data structures to the GPU.
  // NOTE: This synchronizes the CPU and GPU.
  torch::Tensor key_cache_ptrs_tensor = torch::from_blob(
    key_cache_ptrs, {num_layers}, torch::kInt64).to(cache_device);
  torch::Tensor value_cache_ptrs_tensor = torch::from_blob(
    value_cache_ptrs, {num_layers}, torch::kInt64).to(cache_device);
  torch::Tensor block_mapping_tensor = torch::from_blob(
    block_mapping_array, {2 * num_pairs}, torch::kInt).to(cache_device);

  // Launch the kernel.
  const int numel_per_block = key_caches[0][0].numel();
  dim3 grid(num_layers, num_pairs);
  dim3 block(std::min(1024, numel_per_block));
  const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    key_caches[0].scalar_type(), "copy_blocks_kernel", ([&] {
      cacheflow::copy_blocks_kernel<scalar_t><<<grid, block, 0, stream>>>(
        key_cache_ptrs_tensor.data_ptr<int64_t>(),
        value_cache_ptrs_tensor.data_ptr<int64_t>(),
        block_mapping_tensor.data_ptr<int>(),
        numel_per_block);
    }));
133
134
}

Woosuk Kwon's avatar
Woosuk Kwon committed
135
136
namespace cacheflow {

Woosuk Kwon's avatar
Woosuk Kwon committed
137
138
139
140
141
template<typename scalar_t>
__global__ void reshape_and_cache_kernel(
  const scalar_t* __restrict__ key,     // [num_tokens, num_heads, head_size]
  const scalar_t* __restrict__ value,   // [num_tokens, num_heads, head_size]
  scalar_t* __restrict__ key_cache,     // [num_blocks, num_heads, head_size/x, block_size, x]
142
  scalar_t* __restrict__ value_cache,   // [num_blocks, num_heads, head_size, block_size]
Woosuk Kwon's avatar
Woosuk Kwon committed
143
  const int* __restrict__ slot_mapping, // [num_tokens]
Woosuk Kwon's avatar
Woosuk Kwon committed
144
145
  const int key_stride,
  const int value_stride,
Woosuk Kwon's avatar
Woosuk Kwon committed
146
147
148
149
150
151
152
153
154
155
156
  const int num_heads,
  const int head_size,
  const int block_size,
  const int x) {
  const int token_idx = blockIdx.x;
  const int slot_idx = slot_mapping[token_idx];
  const int block_idx = slot_idx / block_size;
  const int block_offset = slot_idx % block_size;

  const int n = num_heads * head_size;
  for (int i = threadIdx.x; i < n; i += blockDim.x) {
Woosuk Kwon's avatar
Woosuk Kwon committed
157
158
    const int src_key_idx = token_idx * key_stride + i;
    const int src_value_idx = token_idx * value_stride + i;
Woosuk Kwon's avatar
Woosuk Kwon committed
159
160
161
162
163
164
165
166
167
168
169

    const int head_idx = i / head_size;
    const int head_offset = i % head_size;
    const int x_idx = head_offset / x;
    const int x_offset = head_offset % x;

    const int tgt_key_idx = block_idx * num_heads * (head_size / x) * block_size * x
                            + head_idx * (head_size / x) * block_size * x
                            + x_idx * block_size * x
                            + block_offset * x
                            + x_offset;
170
171
172
173
    const int tgt_value_idx = block_idx * num_heads * head_size * block_size
                              + head_idx * head_size * block_size
                              + head_offset * block_size
                              + block_offset;
Woosuk Kwon's avatar
Woosuk Kwon committed
174
175
    key_cache[tgt_key_idx] = __ldg(&key[src_key_idx]);
    value_cache[tgt_value_idx] = __ldg(&value[src_value_idx]);
Woosuk Kwon's avatar
Woosuk Kwon committed
176
177
178
  }
}

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
// Grid: (num_blocks, block_size).
template<typename scalar_t>
__global__ void gather_cached_kv_kernel(
  scalar_t* __restrict__ key,             // [num_tokens, [stride], num_heads, head_size]
  scalar_t* __restrict__ value,           // [num_tokens, [stride], num_heads, head_size]
  const scalar_t* __restrict__ key_cache,   // [num_blocks, num_heads, head_size/x, block_size, x]
  const scalar_t* __restrict__ value_cache,   // [num_blocks, num_heads, head_size, block_size]
  const int* __restrict__ slot_mapping,   // [num_tokens]
  const int key_stride,
  const int value_stride,
  const int num_heads,
  const int head_size,
  const int block_size,
  const int x) {
    const int token_idx = blockIdx.x;
    const int slot_idx = slot_mapping[token_idx];
    const int block_idx = slot_idx / block_size;
    const int block_offset = slot_idx % block_size;

    const int num_tokens = num_heads * head_size;
    for (int i = threadIdx.x; i < num_tokens; i += blockDim.x) {
      const int tgt_key_idx = token_idx * key_stride + i;
      const int tgt_value_idx = token_idx * value_stride + i;
  
      const int head_idx = i / head_size;
      const int head_offset = i % head_size;
      const int x_idx = head_offset / x;  // the offset of the [head_size/x] dimension
      const int x_offset = head_offset % x;
  
      const int src_key_idx = block_idx * num_heads * (head_size / x) * block_size * x
                              + head_idx * (head_size / x) * block_size * x
                              + x_idx * block_size * x
                              + block_offset * x
                              + x_offset;
      const int src_value_idx = block_idx * num_heads * head_size * block_size
                                + head_idx * head_size * block_size
                                + head_offset * block_size
                                + block_offset;

      key[tgt_key_idx] = __ldg(&key_cache[src_key_idx]);
      value[tgt_value_idx] = __ldg(&value_cache[src_value_idx]);
    }
}

template <typename scalar_t>
__global__ void gather_cached_kv_kernel_optimized(
    scalar_t *__restrict__ key,             // [num_tokens, [stride], num_heads, head_size]
    scalar_t *__restrict__ value,           // [num_tokens, [stride], num_heads, head_size]
    const scalar_t *__restrict__ key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
    const scalar_t *__restrict__ value_cache, // [num_blocks, num_heads, head_size, block_size]
    const int *__restrict__ slot_mapping,   // [num_tokens]
    const int key_stride,
    const int value_stride,
    const int num_heads,
    const int head_size,
    const int block_size,
    const int x)
{
    const int token_idx = blockIdx.x;
    const int slot_idx = slot_mapping[token_idx];
    const int block_idx = slot_idx / block_size;
    const int block_offset = slot_idx % block_size;

    const int dim = num_heads * head_size;
    assert(dim % 4 == 0);  // this is true for known use cases
    const int unroll_factor = 4;
    const int unrolled_dim = dim / unroll_factor;

    for (int i = threadIdx.x; i < unrolled_dim; i += blockDim.x)
    {
        int tgt_key_indices[unroll_factor];
        int tgt_value_indices[unroll_factor];
        int src_key_indices[unroll_factor];
        int src_value_indices[unroll_factor];
        scalar_t keys_to_store[unroll_factor];
        scalar_t values_to_store[unroll_factor];

        #pragma unroll
        for (int j = 0; j < unroll_factor; ++j)
        {
            int index = i + j * unrolled_dim;

            const int tgt_key_idx = token_idx * key_stride + index;
            const int tgt_value_idx = token_idx * value_stride + index;

            const int head_idx = index / head_size;
            const int head_offset = index % head_size;
            const int x_idx = head_offset / x;
            const int x_offset = head_offset % x;

            const int src_key_idx = block_idx * num_heads * (head_size / x) * block_size * x
                                    + head_idx * (head_size / x) * block_size * x
                                    + x_idx * block_size * x
                                    + block_offset * x
                                    + x_offset;
            const int src_value_idx = block_idx * num_heads * head_size * block_size
                                      + head_idx * head_size * block_size
                                      + head_offset * block_size
                                      + block_offset;

            tgt_key_indices[j] = tgt_key_idx;
            tgt_value_indices[j] = tgt_value_idx;
            src_key_indices[j] = src_key_idx;
            src_value_indices[j] = src_value_idx;

            keys_to_store[j] = __ldg(&key_cache[src_key_idx]);
            values_to_store[j] = __ldg(&value_cache[src_value_idx]);
        }

        #pragma unroll
        for (int j = 0; j < unroll_factor; ++j)
        {
            key[tgt_key_indices[j]] = keys_to_store[j];
            value[tgt_value_indices[j]] = values_to_store[j];
        }
    }
}

Woosuk Kwon's avatar
Woosuk Kwon committed
297
298
} // namespace cacheflow

Woosuk Kwon's avatar
Woosuk Kwon committed
299
void reshape_and_cache(
Woosuk Kwon's avatar
Woosuk Kwon committed
300
301
302
303
304
305
  torch::Tensor& key,           // [num_tokens, num_heads, head_size]
  torch::Tensor& value,         // [num_tokens, num_heads, head_size]
  torch::Tensor& key_cache,     // [num_blocks, num_heads, head_size/x, block_size, x]
  torch::Tensor& value_cache,   // [num_blocks, num_heads, head_size, block_size]
  torch::Tensor& slot_mapping)  // [num_tokens]
{
Woosuk Kwon's avatar
Woosuk Kwon committed
306
  int num_tokens = key.size(0);
307
  int num_heads = key.size(1);
Woosuk Kwon's avatar
Woosuk Kwon committed
308
309
310
311
  int head_size = key.size(2);
  int block_size = key_cache.size(3);
  int x = key_cache.size(4);

Woosuk Kwon's avatar
Woosuk Kwon committed
312
313
314
  int key_stride = key.stride(0);
  int value_stride = value.stride(0);

Woosuk Kwon's avatar
Woosuk Kwon committed
315
  dim3 grid(num_tokens);
316
  dim3 block(std::min(num_heads * head_size, 512));
Woosuk Kwon's avatar
Woosuk Kwon committed
317
318
319
320
321
  const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    key.scalar_type(),
    "reshape_and_cache_kernel",
    [&] {
Woosuk Kwon's avatar
Woosuk Kwon committed
322
      cacheflow::reshape_and_cache_kernel<scalar_t><<<grid, block, 0, stream>>>(
Woosuk Kwon's avatar
Woosuk Kwon committed
323
324
325
326
327
        key.data_ptr<scalar_t>(),
        value.data_ptr<scalar_t>(),
        key_cache.data_ptr<scalar_t>(),
        value_cache.data_ptr<scalar_t>(),
        slot_mapping.data_ptr<int>(),
Woosuk Kwon's avatar
Woosuk Kwon committed
328
329
        key_stride,
        value_stride,
330
        num_heads,
Woosuk Kwon's avatar
Woosuk Kwon committed
331
332
333
334
335
        head_size,
        block_size,
        x);
    });
}
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374


void gather_cached_kv(
  torch::Tensor& key,           // [out] [num_tokens, num_heads, head_size]
  torch::Tensor& value,         // [out] [num_tokens, num_heads, head_size]
  torch::Tensor& key_cache,     // [in]  [num_blocks, num_heads, head_size/x, block_size, x]
  torch::Tensor& value_cache,   // [in]  [num_blocks, num_heads, head_size, block_size]
  torch::Tensor& slot_mapping)  // [in]  [num_tokens]
{
  int num_tokens = key.size(0);
  int num_heads = key.size(1);
  int head_size = key.size(2);
  int block_size = key_cache.size(3);
  int x = key_cache.size(4);

  int key_stride = key.stride(0);
  int value_stride = value.stride(0);

  dim3 grid(num_tokens);
  dim3 block(std::min(num_heads * head_size, 512));
  const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
    key.scalar_type(),
    "gather_cached_kv_kernel_optimized",
    [&] {
      cacheflow::gather_cached_kv_kernel_optimized<scalar_t><<<grid, block, 0, stream>>>(
        key.data_ptr<scalar_t>(),
        value.data_ptr<scalar_t>(),
        key_cache.data_ptr<scalar_t>(),
        value_cache.data_ptr<scalar_t>(),
        slot_mapping.data_ptr<int>(),
        key_stride,
        value_stride,
        num_heads,
        head_size,
        block_size,
        x);
    });
}